determine-using-laplce-transformation-this-integrale-0-tsin-tx-a-2-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 106691 by Laplace last updated on 06/Aug/20 determineusinglaplcetransformationthisintegrale∫0+∞tsin(tx)a2+t2dt Answered by mathmax by abdo last updated on 06/Aug/20 fa(x)=∫0∞tsin(tx)a2+t2dt⇒fa(x)=∫0∞tsin(tx)∫0∞e−(a2+t2)xdxdt=∫0∞(∫0∞sin(tx)e−(a2+t2)xdx)tdt(byuseoffubini)∫0∞sin(tx)e−(a2+t2)xdx=Im(∫0∞eitx−(a2+t2)xdx)and∫0∞e(it−(a2+t2))xdx=[1it−(a2+t2)e(it−(a2+t2))x]0∞=−1it−(a2+t2)=1(a2+t2)−it=a2+t2+it(a2+t2)2+t2⇒Im(…)=t(a2+t2)2+t2⇒fa(x)=∫0∞t2(a2+t2)2+t2dt=∫0∞t2(a4+2a2t2+t4+t2dt=∫0∞t2t4+(2a2+1)t2+a4dt=12∫−∞+∞t2t4+(2a2+1)t2+a4dtletφ(z)=z2z4+(2a2+1)z2+a4polesofφ?Δ=(2a2+1)2−4a4=4a4+4a2+1−4a4=4a2+1(z2=u)u1=−(2a2+1)+4a2+12andu2=−(2a2+1)−4a2+12⇒φ(z)=z2(z2−u1)(z2−u2)=z2(z−u1)(z+u1)(z−u2)(z+u2)u1=i2a2+1−4a2+12andu2=i2a2+1+4a2+12…becontinued… Commented by Ar Brandon last updated on 06/Aug/20 �� Answered by abdomathmax last updated on 07/Aug/20 residusmethodletI=∫0∞tsin(tx)t2+a2dt⇒I=t=∣a∣u∫0∞∣a∣usin(∣a∣ux)a2(u2+1)∣a∣du=∫0∞usin(x∣a∣u)u2+1=12∫−∞+∞usin(x∣a∣u)u2+1du=12Im(∫−∞+∞ueix∣a∣uu2+1du)letφ(z)=zeix∣a∣zz2+1∫−∞+∞φ(z)dx=2iπRes(φ,i)=2iπ×ie−x∣a∣2i=iπe−x∣a∣⇒I=π2e−x∣a∣ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Proof-that-d-n-dx-n-cos-x-cos-x-npi-2-d-n-dx-n-sin-x-sin-x-npi-2-where-n-Z-Next Next post: this-question-was-repeatd-six-times-in-a-various-exams-between-1971-to-2001-if-C-0-C-1-C-2-C-n-are-the-coefficients-in-the-expansion-of-1-x-n-then-c-0-2C-1-3C-2-n-1-C-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.