Menu Close

determine-using-laplce-transformation-this-integrale-0-tsin-tx-a-2-t-2-dt-




Question Number 106691 by Laplace last updated on 06/Aug/20
determine using  laplce transformation this  integrale     ∫_0 ^(+∞) ((tsin(tx))/(a^2 +t^(2 ) ))dt
determineusinglaplcetransformationthisintegrale0+tsin(tx)a2+t2dt
Answered by mathmax by abdo last updated on 06/Aug/20
f_a (x) =∫_0 ^∞  ((tsin(tx))/(a^2  +t^2 )) dt ⇒f_a (x) =∫_0 ^∞  tsin(tx)∫_0 ^∞ e^(−(a^2 +t^2 )x) dx dt  =∫_0 ^∞  (∫_0 ^∞ sin(tx)e^(−(a^2  +t^2 )x) dx)tdt (by use of fubini)  ∫_0 ^∞  sin(tx) e^(−(a^2  +t^2 )x)  dx =Im(∫_0 ^∞  e^(itx−(a^2  +t^2 )x)  dx) and  ∫_0 ^∞  e^((it−(a^2  +t^2 ))x) dx =[(1/(it−(a^2 +t^2 ))) e^((it−(a^2  +t^2 ))x) ]_0 ^∞   =((−1)/(it−(a^2  +t^2 ))) =(1/((a^2  +t^2 )−it)) =((a^2 +t^2 +it)/((a^2  +t^2 )^2  +t^2 )) ⇒  Im(...) =(t/((a^2  +t^2 )^2  +t^2 )) ⇒  f_a (x) =∫_0 ^∞   (t^2 /((a^2  +t^2 )^2 +t^2 )) dt =∫_0 ^∞  (t^2 /((a^4 +2a^2 t^2  +t^4  +t^2 ))dt  =∫_0 ^∞  (t^2 /(t^4  +(2a^2  +1)t^2  +a^4 )) dt =(1/2)∫_(−∞) ^(+∞)  (t^2 /(t^4  +(2a^2  +1)t^2  +a^4 )) dt  let ϕ(z) =(z^2 /(z^4  +(2a^2  +1)z^2  +a^4 ))  poles of ϕ?  Δ =(2a^2  +1)^2 −4a^4  =4a^4 +4a^2  +1−4a^4  =4a^2  +1  (z^2  =u)  u_1 =((−(2a^2  +1)+(√(4a^2  +1)))/2)  and u_2 =((−(2a^2  +1)−(√(4a^2  +1)))/2)  ⇒ϕ(z) =(z^2 /((z^2 −u_1 )(z^2 −u_2 ))) =(z^2 /((z−(√u_1 ))(z+(√u_1 ))(z−(√u_2 ))(z+(√u_2 ))))  (√u_1 )=i(√((2a^(2 ) +1−(√(4a^2  +1)))/2)) and (√u_2 )=i(√((2a^2  +1+(√(4a^2  +1)))/2))  ...be continued...
fa(x)=0tsin(tx)a2+t2dtfa(x)=0tsin(tx)0e(a2+t2)xdxdt=0(0sin(tx)e(a2+t2)xdx)tdt(byuseoffubini)0sin(tx)e(a2+t2)xdx=Im(0eitx(a2+t2)xdx)and0e(it(a2+t2))xdx=[1it(a2+t2)e(it(a2+t2))x]0=1it(a2+t2)=1(a2+t2)it=a2+t2+it(a2+t2)2+t2Im()=t(a2+t2)2+t2fa(x)=0t2(a2+t2)2+t2dt=0t2(a4+2a2t2+t4+t2dt=0t2t4+(2a2+1)t2+a4dt=12+t2t4+(2a2+1)t2+a4dtletφ(z)=z2z4+(2a2+1)z2+a4polesofφ?Δ=(2a2+1)24a4=4a4+4a2+14a4=4a2+1(z2=u)u1=(2a2+1)+4a2+12andu2=(2a2+1)4a2+12φ(z)=z2(z2u1)(z2u2)=z2(zu1)(z+u1)(zu2)(z+u2)u1=i2a2+14a2+12andu2=i2a2+1+4a2+12becontinued
Commented by Ar Brandon last updated on 06/Aug/20
��
Answered by abdomathmax last updated on 07/Aug/20
residus method  let I =∫_0 ^∞  ((tsin(tx))/(t^2 +a^2 ))dt  ⇒ I =_(t=∣a∣u)     ∫_0 ^∞  ((∣a∣usin(∣a∣ux))/(a^2 (u^2  +1)))∣a∣ du  =∫_0 ^∞   ((u sin(x∣a∣u))/(u^2  +1)) =(1/2)∫_(−∞) ^(+∞)  ((u sin(x∣a∣u))/(u^2  +1))du  =(1/2)Im(∫_(−∞) ^(+∞)  ((u e^(ix∣a∣u) )/(u^2  +1))du) let  ϕ(z)=((z e^(ix∣a∣z) )/(z^2  +1))  ∫_(−∞) ^(+∞)  ϕ(z)dx =2iπ Res(ϕ,i) =2iπ×((ie^(−x∣a∣) )/(2i))  =iπ e^(−x∣a∣)  ⇒I =(π/2) e^(−x∣a∣)
residusmethodletI=0tsin(tx)t2+a2dtI=t=∣au0ausin(aux)a2(u2+1)adu=0usin(xau)u2+1=12+usin(xau)u2+1du=12Im(+ueixauu2+1du)letφ(z)=zeixazz2+1+φ(z)dx=2iπRes(φ,i)=2iπ×iexa2i=iπexaI=π2exa

Leave a Reply

Your email address will not be published. Required fields are marked *