Menu Close

Determine-whether-the-following-is-true-for-all-value-of-x-0-x-1-2-x-2-x-1-4-3-




Question Number 50890 by peter frank last updated on 21/Dec/18
Determine whether  the following  is true for all  value of x  0≤(((x+1)^2 )/(x^2 +x+1))≤(4/3)
$${Determine}\:{whether} \\ $$$${the}\:{following}\:\:{is}\:{true}\:{for}\:{all} \\ $$$${value}\:{of}\:{x} \\ $$$$\mathrm{0}\leqslant\frac{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\leqslant\frac{\mathrm{4}}{\mathrm{3}} \\ $$
Answered by MJS last updated on 21/Dec/18
∀x∈R: (x+1)^2 ≥0∧(x^2 +x+1)≥0 ⇒ 0≤(((x+1)^2 )/(x^2 +x+1))  3(x+1)^2 ≤4(x^2 +x+1)  3x^2 +6x+3≤4x^2 +4x+4  0≤x^2 −2x+1  0≤(x−1)^2  ∀x∈R ⇒  ⇒ 0≤(((x+1)^2 )/(x^2 +x+1))≤(4/3) ∀x∈R
$$\forall{x}\in\mathbb{R}:\:\left({x}+\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{0}\wedge\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\geqslant\mathrm{0}\:\Rightarrow\:\mathrm{0}\leqslant\frac{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$$\mathrm{3}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \leqslant\mathrm{4}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{3}\leqslant\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4} \\ $$$$\mathrm{0}\leqslant{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1} \\ $$$$\mathrm{0}\leqslant\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:\forall{x}\in\mathbb{R}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{0}\leqslant\frac{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\leqslant\frac{\mathrm{4}}{\mathrm{3}}\:\forall{x}\in\mathbb{R} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *