Menu Close

Determiner-1-x-x-4-x-2-1-dx-2-x-4-1-x-4-x-2-1-dx-




Question Number 181319 by a.lgnaoui last updated on 23/Nov/22
Determiner  1.   ∫(x/(x^4 +x^2 +1))dx  2.   ∫((x^4 +1)/(x^4 +x^2 +1))dx
Determiner1.xx4+x2+1dx2.x4+1x4+x2+1dx
Answered by floor(10²Eta[1]) last updated on 23/Nov/22
∫(x/(x^4 +x^2 +1))dx=I  u=x^2 ⇒(du/2)=xdx  I=(1/2)∫(du/(u^2 +u+1))=(2/3)∫(du/((((2u)/( (√3)))+(1/( (√3))))^2 +1))  t=((2u+1)/( (√3)))⇒dt=(2/( (√3)))du  I=((√3)/3)∫(dt/(t^2 +1))=((√3)/3)arctg(t)+C  ⇒I=((√3)/3)arctg(((2x^2 +1)/( (√3))))+C
xx4+x2+1dx=Iu=x2du2=xdxI=12duu2+u+1=23du(2u3+13)2+1t=2u+13dt=23duI=33dtt2+1=33arctg(t)+CI=33arctg(2x2+13)+C
Commented by a.lgnaoui last updated on 24/Nov/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *