Menu Close

Determiner-l-original-de-laplace-F-p-1-p-2-p-1-2-




Question Number 144463 by lapache last updated on 25/Jun/21
Determiner l′original de laplace  F(p)=(1/((p^2 +p+1)^2 ))
DeterminerloriginaldelaplaceF(p)=1(p2+p+1)2
Answered by Olaf_Thorendsen last updated on 27/Jun/21
F(p) = (1/((p^2 +p+1)^2 ))  a = ((−1−i(√3))/2), b = ((−1+i(√3))/2)  F(p) = (1/((p−a)^2 (p−b)^2 ))  F(p) = −(1/3).(1/((p−a)^2 ))−(1/3)(1/((p−b)^2 ))  +((2i)/(2(√3))).(1/(p−a))−((2i)/(3(√3))).(1/(p−b))    f(t) = L^(−1) {F}(t)   f(t) = −(1/3)te^(−at) −(1/3)te^(−bt) +((2i)/(3(√3)))e^(−at) −((2i)/(3(√3)))e^(−bt)   f(t) = −(1/3)t(e^(−at) +e^(−bt) )+((2i)/(3(√3)))(e^(−at) −e^(−bt) )  f(t) = −(1/(3(√e)))t(e^(i(√3)t) +e^(−i(√3)t) )+((2i)/(3(√(3e))))(e^(i(√3)t) −e^(−i(√3)t) )  f(t) = −(2/(3(√e)))t.cos((√3)t)−(4/(3(√(3e))))sin((√3)t)  f(t) = −(2/(3(√e)))[t.cos((√3)t)+(2/( (√3)))sin((√3)t)]
F(p)=1(p2+p+1)2a=1i32,b=1+i32F(p)=1(pa)2(pb)2F(p)=13.1(pa)2131(pb)2+2i23.1pa2i33.1pbf(t)=L1{F}(t)f(t)=13teat13tebt+2i33eat2i33ebtf(t)=13t(eat+ebt)+2i33(eatebt)f(t)=13et(ei3t+ei3t)+2i33e(ei3tei3t)f(t)=23et.cos(3t)433esin(3t)f(t)=23e[t.cos(3t)+23sin(3t)]

Leave a Reply

Your email address will not be published. Required fields are marked *