Question Number 144463 by lapache last updated on 25/Jun/21
$${Determiner}\:{l}'{original}\:{de}\:{laplace} \\ $$$${F}\left({p}\right)=\frac{\mathrm{1}}{\left({p}^{\mathrm{2}} +{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Answered by Olaf_Thorendsen last updated on 27/Jun/21
$${F}\left({p}\right)\:=\:\frac{\mathrm{1}}{\left({p}^{\mathrm{2}} +{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${a}\:=\:\frac{−\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}},\:{b}\:=\:\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${F}\left({p}\right)\:=\:\frac{\mathrm{1}}{\left({p}−{a}\right)^{\mathrm{2}} \left({p}−{b}\right)^{\mathrm{2}} } \\ $$$${F}\left({p}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{3}}.\frac{\mathrm{1}}{\left({p}−{a}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}}\frac{\mathrm{1}}{\left({p}−{b}\right)^{\mathrm{2}} } \\ $$$$+\frac{\mathrm{2}{i}}{\mathrm{2}\sqrt{\mathrm{3}}}.\frac{\mathrm{1}}{{p}−{a}}−\frac{\mathrm{2}{i}}{\mathrm{3}\sqrt{\mathrm{3}}}.\frac{\mathrm{1}}{{p}−{b}} \\ $$$$ \\ $$$${f}\left({t}\right)\:=\:\mathscr{L}^{−\mathrm{1}} \left\{\mathrm{F}\right\}\left({t}\right)\: \\ $$$${f}\left({t}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{3}}{te}^{−{at}} −\frac{\mathrm{1}}{\mathrm{3}}{te}^{−{bt}} +\frac{\mathrm{2}{i}}{\mathrm{3}\sqrt{\mathrm{3}}}{e}^{−{at}} −\frac{\mathrm{2}{i}}{\mathrm{3}\sqrt{\mathrm{3}}}{e}^{−{bt}} \\ $$$${f}\left({t}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{3}}{t}\left({e}^{−{at}} +{e}^{−{bt}} \right)+\frac{\mathrm{2}{i}}{\mathrm{3}\sqrt{\mathrm{3}}}\left({e}^{−{at}} −{e}^{−{bt}} \right) \\ $$$${f}\left({t}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{3}\sqrt{{e}}}{t}\left({e}^{{i}\sqrt{\mathrm{3}}{t}} +{e}^{−{i}\sqrt{\mathrm{3}}{t}} \right)+\frac{\mathrm{2}{i}}{\mathrm{3}\sqrt{\mathrm{3}{e}}}\left({e}^{{i}\sqrt{\mathrm{3}}{t}} −{e}^{−{i}\sqrt{\mathrm{3}}{t}} \right) \\ $$$${f}\left({t}\right)\:=\:−\frac{\mathrm{2}}{\mathrm{3}\sqrt{{e}}}{t}.\mathrm{cos}\left(\sqrt{\mathrm{3}}{t}\right)−\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}{e}}}\mathrm{sin}\left(\sqrt{\mathrm{3}}{t}\right) \\ $$$${f}\left({t}\right)\:=\:−\frac{\mathrm{2}}{\mathrm{3}\sqrt{{e}}}\left[{t}.\mathrm{cos}\left(\sqrt{\mathrm{3}}{t}\right)+\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{sin}\left(\sqrt{\mathrm{3}}{t}\right)\right] \\ $$