Question Number 147711 by lapache last updated on 22/Jul/21
$${Determiner}\:{l}'{original}\:{de}\:{laplace} \\ $$$${F}\left({x}\right)=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Answered by Olaf_Thorendsen last updated on 23/Jul/21
$$\mathrm{G}\left({x}\right)\:=\:{F}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} } \\ $$$${H}\left({x}\right)\:=\:{G}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)\:=\:\frac{\mathrm{16}}{\mathrm{9}}.\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${H}\left({x}\right)\:=\:\frac{\mathrm{16}}{\mathrm{9}}\left[−\frac{\mathrm{1}}{\mathrm{4}\left({x}+{i}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{4}\left({x}−{i}\right)^{\mathrm{2}} }+\frac{{i}}{\mathrm{4}\left({x}+{i}\right)}−\frac{{i}}{\mathrm{4}\left({x}−{i}\right)}\right] \\ $$$${H}\left({x}\right)\:=\:\frac{\mathrm{4}}{\mathrm{9}}\left[−\frac{\mathrm{1}}{\left({x}+{i}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left({x}−{i}\right)^{\mathrm{2}} }+\frac{{i}}{{x}+{i}}−\frac{{i}}{{x}−{i}}\right] \\ $$$$\mathcal{L}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{x}−{a}}\right)\:=\:{e}^{{at}} \:\mathrm{et}\:\mathcal{L}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\left({x}−{a}\right)^{\mathrm{2}} }\right)\:=\:{te}^{{at}} \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{{H}\right\}\left({t}\right)\:=\:\frac{\mathrm{4}}{\mathrm{9}}\left[−{te}^{−{it}} −{te}^{{it}} +{ie}^{−{it}} −{ie}^{{it}} \right] \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{{H}\right\}\left({t}\right)\:=\:\frac{\mathrm{4}}{\mathrm{9}}\left[−\mathrm{2}{t}\mathrm{cos}{t}+\mathrm{2sin}{t}\right] \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{{H}\right\}\left({t}\right)\:=\:\frac{\mathrm{8}}{\mathrm{9}}\left(\mathrm{sin}{t}−{t}\mathrm{cos}{t}\right) \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{\mathrm{G}\left({x}\right)\right\}\left({t}\right)\:=\:\mathcal{L}^{−\mathrm{1}} \left\{\mathrm{H}\left(\frac{{x}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\right)\right\}\left({t}\right)\: \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{\mathrm{G}\left({x}\right)\right\}\left({t}\right)\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\mathcal{L}^{−\mathrm{1}} \left\{\mathrm{H}\left(\frac{{x}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\right)\right\}\left({t}\right)\:\right) \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{\mathrm{G}\left({x}\right)\right\}\left({t}\right)\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\mathcal{L}^{−\mathrm{1}} \left\{\mathrm{H}\right\}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\right)\right) \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{\mathrm{G}\right\}\left({t}\right)\:=\:\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}\left(\mathrm{sin}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\right)\right) \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{{F}\left({x}\right)\right\}\left({t}\right)\:=\:\mathcal{L}^{−\mathrm{1}} \left\{{G}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\right\}\left({t}\right) \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{{F}\left({x}\right)\right\}\left({t}\right)\:=\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{t}} \mathcal{L}^{−\mathrm{1}} \left\{{G}\left({x}\right)\right\}\left({t}\right) \\ $$$$ \\ $$$$\mathcal{L}^{−\mathrm{1}} \left\{{F}\right\}\left({t}\right)\:=\:\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}{e}^{−\frac{{t}}{\mathrm{2}}} \left(\mathrm{sin}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\right)\right) \\ $$