Menu Close

Determiner-l-original-de-laplace-F-x-1-x-2-x-1-2-




Question Number 147711 by lapache last updated on 22/Jul/21
Determiner l′original de laplace  F(x)=(1/((x^2 +x+1)^2 ))
DeterminerloriginaldelaplaceF(x)=1(x2+x+1)2
Answered by Olaf_Thorendsen last updated on 23/Jul/21
G(x) = F(x−(1/2)) = (1/((x^2 +(3/4))^2 ))  H(x) = G(((√3)/2)x) = ((16)/9).(1/((x^2 +1)^2 ))  H(x) = ((16)/9)[−(1/(4(x+i)^2 ))−(1/(4(x−i)^2 ))+(i/(4(x+i)))−(i/(4(x−i)))]  H(x) = (4/9)[−(1/((x+i)^2 ))−(1/((x−i)^2 ))+(i/(x+i))−(i/(x−i))]  L^(−1) ((1/(x−a))) = e^(at)  et L^(−1) ((1/((x−a)^2 ))) = te^(at)   L^(−1) {H}(t) = (4/9)[−te^(−it) −te^(it) +ie^(−it) −ie^(it) ]  L^(−1) {H}(t) = (4/9)[−2tcost+2sint]  L^(−1) {H}(t) = (8/9)(sint−tcost)  L^(−1) {G(x)}(t) = L^(−1) {H((x/((√3)/2)))}(t)   L^(−1) {G(x)}(t) = ((√3)/2)((1/((√3)/2))L^(−1) {H((x/((√3)/2)))}(t) )  L^(−1) {G(x)}(t) = ((√3)/2)(L^(−1) {H}(((√3)/2)t))  L^(−1) {G}(t) = (4/(3(√3)))(sin(((√3)/2)t)−((√3)/2)tcos(((√3)/2)t))  L^(−1) {F(x)}(t) = L^(−1) {G(x+(1/2))}(t)  L^(−1) {F(x)}(t) = e^(−(1/2)t) L^(−1) {G(x)}(t)    L^(−1) {F}(t) = (4/(3(√3)))e^(−(t/2)) (sin(((√3)/2)t)−((√3)/2)tcos(((√3)/2)t))
G(x)=F(x12)=1(x2+34)2H(x)=G(32x)=169.1(x2+1)2H(x)=169[14(x+i)214(xi)2+i4(x+i)i4(xi)]H(x)=49[1(x+i)21(xi)2+ix+iixi]L1(1xa)=eatetL1(1(xa)2)=teatL1{H}(t)=49[teitteit+ieitieit]L1{H}(t)=49[2tcost+2sint]L1{H}(t)=89(sinttcost)L1{G(x)}(t)=L1{H(x32)}(t)L1{G(x)}(t)=32(132L1{H(x32)}(t))L1{G(x)}(t)=32(L1{H}(32t))L1{G}(t)=433(sin(32t)32tcos(32t))L1{F(x)}(t)=L1{G(x+12)}(t)L1{F(x)}(t)=e12tL1{G(x)}(t)L1{F}(t)=433et2(sin(32t)32tcos(32t))

Leave a Reply

Your email address will not be published. Required fields are marked *