Menu Close

determiner-le-reste-de-la-division-euclidienne-de-10-100-par-105-




Question Number 162118 by SANOGO last updated on 27/Dec/21
determiner le reste de la division euclidienne de  10^(100)  par 105
determinerlerestedeladivisioneuclidiennede10100par105
Commented by SANOGO last updated on 27/Dec/21
thank you
thankyou
Commented by SANOGO last updated on 27/Dec/21
merci bien
mercibien
Commented by mr W last updated on 27/Dec/21
in following stupid method   with “=^R ” i mean  “has the same remainder as”.  10^(100) =10×10^(99) =10×(1000)^(33)   =10×(9×105+55)^(33)   =^R 10×55^(33) =10×55×(3025)^(16)   =10×55×(28×105+85)^(16)   =^R 10×55×85^(16) =10×55×(68×105+85)^8   =^R 10×55×85^8   =^R 10×55×85^4   =^R 10×55×85^2   =^R 10×55×85  =^R 25  i.e. the remainder is 25 when 10^(100)   is divided by 105.
infollowingstupidmethodwith=Rimeanhasthesameremainderas.10100=10×1099=10×(1000)33=10×(9×105+55)33=R10×5533=10×55×(3025)16=10×55×(28×105+85)16=R10×55×8516=10×55×(68×105+85)8=R10×55×858=R10×55×854=R10×55×852=R10×55×85=R25i.e.theremainderis25when10100isdividedby105.
Commented by Rasheed.Sindhi last updated on 27/Dec/21
∨ ∩i⊂∈ sir!   If your ′stupid′ method is so wonderful  what your ′wonderful′ method will be!!!
i⊂∈sir!Ifyourstupidmethodissowonderfulwhatyourwonderfulmethodwillbe!!!
Commented by Rasheed.Sindhi last updated on 27/Dec/21
The following method also works well:  x≡y(mod 6)_(x & y have_(same remainder_(on dividing 6) )  ) ⇒10^x ≡10^y (mod 105)_(10^x &10^y  have_(same remainder_(on dividing 105) ) )   ⇒10^(6x+k) ≡10^k       10^(100) =10^(6×16+4) ≡10^4 ≡25(mod 105)
Thefollowingmethodalsoworkswell:xy(mod6)x&yhavesameremainderondividing610x10y(mod105)10x&10yhavesameremainderondividing105106x+k10k10100=106×16+410425(mod105)
Commented by mr W last updated on 27/Dec/21
this is a smart method!
thisisasmartmethod!
Commented by Rasheed.Sindhi last updated on 27/Dec/21
Thanks sir!
Thankssir!

Leave a Reply

Your email address will not be published. Required fields are marked *