Menu Close

determiner-r-AB-6-AE-5-




Question Number 183631 by a.lgnaoui last updated on 27/Dec/22
determiner   r?  AB=6     AE=5
determinerr?AB=6AE=5
Commented by a.lgnaoui last updated on 27/Dec/22
Answered by mr W last updated on 28/Dec/22
Commented by mr W last updated on 28/Dec/22
BE^2 =5^2 +6^2 −2×5×6 cos 30°  ⇒BE=(√(61−30(√3)))  R=((√(61−30(√3)))/(2 sin 30°))=(√(61−30(√3)))  cos α=(6/(2(√(61−30(√3)))))=(3/( (√(61−30(√3)))))  ⇒sin α=((√(52−30(√3)))/( (√(61−30(√3)))))  AF=(r/(sin 15°))=((4r)/( (√6)−(√2)))=((√6)+(√2))r  cos (α+15°)=((R^2 +r^2 ((√6)+(√2))^2 −(R−r)^2 )/(2Rr((√6)+(√2))))  cos α cos 15°−sin α sin 15°=(((7+4(√3))r+2R)/(2R((√6)+(√2))))  (3/( (√(61−30(√3)))))×(((√6)+(√2))/4)−((√(52−30(√3)))/( (√(61−30(√3)))))×(((√6)−(√2))/4)=(((7+4(√3))r+2R)/(2R((√6)+(√2))))  3(2+(√3))−(√(52−30(√3)))=(((7+4(√3))r)/2)+R  ⇒r=2(7−4(√3))(6+3(√3)−(√(52−30(√3)))−(√(61−30(√3))))≈1.1478
BE2=52+622×5×6cos30°BE=61303R=613032sin30°=61303cosα=6261303=361303sinα=5230361303AF=rsin15°=4r62=(6+2)rcos(α+15°)=R2+r2(6+2)2(Rr)22Rr(6+2)cosαcos15°sinαsin15°=(7+43)r+2R2R(6+2)361303×6+245230361303×624=(7+43)r+2R2R(6+2)3(2+3)52303=(7+43)r2+Rr=2(743)(6+335230361303)1.1478

Leave a Reply

Your email address will not be published. Required fields are marked *