Menu Close

developp-at-fourier-serie-g-x-2-3-sin-2-x-




Question Number 98185 by abdomathmax last updated on 12/Jun/20
developp at fourier serie  g(x) =(2/(3+sin^2 x))
developpatfourierserieg(x)=23+sin2x
Answered by mathmax by abdo last updated on 12/Jun/20
g(x) =(2/(3+sin^2 x)) =(2/(3+((1−cos(2x))/2))) =(4/(7−cos(2x))) =(4/(7−((e^(i2x) +e^(−i2x) )/2)))  =(8/(14−e^(2ix) −e^(−2ix) ))  =_(e^(2ix) =z)     (8/(14−z−z^(−1) )) =((8z)/(14z−z^2 −1)) =((−8z)/(z^2 −14z +1))=h(z)  z^2 −14z +1 =0→Δ^′  =7^2 −1 =48 ⇒z_1 =7+(√(48))=7+4(√3)  z_2 =7−4(√(3 )) so  ((−8z)/(z^2 −14z+1)) =((−8z)/((z−z_1 )(z−z_2 ))) =(a/(z−z_1 )) +(b/(z−z_2 ))  a =((−8z_1 )/(8(√3))) =−((7+4(√3))/( (√3))) =−(7/( (√3))) +4  b =((−8z_2 )/(−8(√3))) =((7−4(√3))/( (√3))) =(7/( (√3)))−4 ⇒h(z)=((−a)/(z_1 −z))−(b/(z_2 −z)) =((−a)/(z_1 (1−(z/z_1 ))))−(b/(z_2 (1−(z/z_2 ))))  so for ∣z∣ <inf(∣z_1 ∣,∣z_2 ∣)  h(z) =−(a/z_1 )Σ_(n=0) ^∞  (z^n /z_1 ^n )−(b/z_2 ) Σ_(n=0) ^∞  (z^n /z_2 ^n )  =−(a/z_1 ) Σ_(n=0) ^∞  (1/z_1 ^n )e^(2inx)  −(b/z_2 ) Σ_(n=0) ^∞  (1/z_2 ^n ) e^(2inx)   =−Σ_(n=0) ^∞ ( (a/z_1 ^(n+1) ) +(b/z_2 ^(n+1) ))e^(2inx)  =g(x)
g(x)=23+sin2x=23+1cos(2x)2=47cos(2x)=47ei2x+ei2x2=814e2ixe2ix=e2ix=z814zz1=8z14zz21=8zz214z+1=h(z)z214z+1=0Δ=721=48z1=7+48=7+43z2=743so8zz214z+1=8z(zz1)(zz2)=azz1+bzz2a=8z183=7+433=73+4b=8z283=7433=734h(z)=az1zbz2z=az1(1zz1)bz2(1zz2)soforz<inf(z1,z2)h(z)=az1n=0znz1nbz2n=0znz2n=az1n=01z1ne2inxbz2n=01z2ne2inx=n=0(az1n+1+bz2n+1)e2inx=g(x)

Leave a Reply

Your email address will not be published. Required fields are marked *