Menu Close

developp-at-integr-serie-f-x-0-x-sin-t-2-dt-




Question Number 33885 by math khazana by abdo last updated on 26/Apr/18
developp at integr serie f(x)= ∫_0 ^x sin(t^2 )dt .
developpatintegrserief(x)=0xsin(t2)dt.
Commented by prof Abdo imad last updated on 27/Apr/18
we know that sin(u) = Σ_(n=0) ^∞  (((−1)^n u^(2n+1) )/((2n+1)!))  let find the radius of convergence  ∣(u_(n+1) /u_n )∣=(((2n+1)!)/((2n+3)!)) = (((2n+1)!)/((2n+3)(2n+2)(2n+1)!))  = (1/((2n+3)(2n+2))) →0 (n→+∞) so R=+∞  ⇒ sin(t^2 )= Σ_(n=0) ^∞  (((−1)^n  t^(4n+2) )/((2n+1)!)) ⇒  f(x)=∫_0 ^x ( Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!))t^(4n+2) )dt  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)!)) ∫_0 ^x  t^(4n+2) dt  f(x)= Σ_(n=0) ^∞    (((−1)^n )/((4n+3)(2n+1)!))x^(4n+3)  .
weknowthatsin(u)=n=0(1)nu2n+1(2n+1)!letfindtheradiusofconvergenceun+1un∣=(2n+1)!(2n+3)!=(2n+1)!(2n+3)(2n+2)(2n+1)!=1(2n+3)(2n+2)0(n+)soR=+sin(t2)=n=0(1)nt4n+2(2n+1)!f(x)=0x(n=0(1)n(2n+1)!t4n+2)dt=n=0(1)n(2n+1)!0xt4n+2dtf(x)=n=0(1)n(4n+3)(2n+1)!x4n+3.

Leave a Reply

Your email address will not be published. Required fields are marked *