Menu Close

developp-at-integr-serie-f-x-1-x-1-x-2-




Question Number 94337 by mathmax by abdo last updated on 18/May/20
developp at integr serie f(x) =(1/((x−1)(x−2)))
developpatintegrserief(x)=1(x1)(x2)
Answered by Rio Michael last updated on 18/May/20
if you mean develope a series then:  f(x) = (1/((x−1)(x−2))) ≡ (1/(x−2)) −(1/(x−1))  ⇒f(x) = (x−2)^(−1) −(x−1)^(−1)                 = x^(−1) (1−(2/x))^(−1) −x^(−1) (1−(1/x))^(−1)                 = x^(−1) [1 + (2/x) + (4/x^2 )+...]−x^(−1) [1 + (1/x) + (1/x^2 ) + ...]               = (1/x) + (2/x^2 ) + ... −(1/x)−(1/x^2 ) −... = (1/x^2 ) +... ∣(2/x)∣ < 1
ifyoumeandevelopeaseriesthen:f(x)=1(x1)(x2)1x21x1f(x)=(x2)1(x1)1=x1(12x)1x1(11x)1=x1[1+2x+4x2+]x1[1+1x+1x2+]=1x+2x2+1x1x2=1x2+2x<1
Commented by mathmax by abdo last updated on 18/May/20
sir rio this is not developpement at integr serie ...
sirriothisisnotdeveloppementatintegrserie
Answered by mathmax by abdo last updated on 18/May/20
we have  f(x) =Σ_(n=0) ^∞  ((f^n (0))/(n!)) x^n   let determine f^n (0)  we have f(x) =(1/(x−2))−(1/(x−1)) ⇒f^((n)) (x) =(((−1)^n n!)/((x−2)^(n+1) ))−(((−1)^n n!)/((x−1)^(n+1) ))  ⇒f^((n)) (0) =(−1)^n n!{(1/((−2)^(n+1) ))−(1/((−1)^(n+1) ))}  =(((−1)^n n!)/((−1)^(n+1) )){ (1/2^(n+1) )−1} =−n!{(1/2^(n+1) )−1}⇒  f(x) =−Σ_(n=0) ^∞  {(1/2^(n+1) )−1} x^n  =−Σ_(n=0) ^∞ (x^n /2^(n+1) ) +Σ_(n=0) ^∞  x^n    with  ∣x∣<1  .
wehavef(x)=n=0fn(0)n!xnletdeterminefn(0)wehavef(x)=1x21x1f(n)(x)=(1)nn!(x2)n+1(1)nn!(x1)n+1f(n)(0)=(1)nn!{1(2)n+11(1)n+1}=(1)nn!(1)n+1{12n+11}=n!{12n+11}f(x)=n=0{12n+11}xn=n=0xn2n+1+n=0xnwithx∣<1.
Answered by mathmax by abdo last updated on 18/May/20
another way  we have f(x)=(1/(x−2))−(1/(x−1))  =(1/(1−x))−(1/(2−x)) =(1/(1−x))−(1/(2(1−(x/2))))  so for ∣x∣<1 we get  f(x) =Σ_(n=0) ^∞  x^n −(1/2)Σ_(n=0) ^∞  ((x/2))^n  =Σ_(n=0) ^∞ x^n −Σ_(n=0) ^∞  (x^n /2^(n+1) )  =Σ_(n=0) ^∞ (1−(1/2^(n+1) ))x^n
anotherwaywehavef(x)=1x21x1=11x12x=11x12(1x2)soforx∣<1wegetf(x)=n=0xn12n=0(x2)n=n=0xnn=0xn2n+1=n=0(112n+1)xn

Leave a Reply

Your email address will not be published. Required fields are marked *