developp-at-integr-serie-x-dt-t-4-t-2-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 94333 by mathmax by abdo last updated on 18/May/20 developpatintegrserie∫−∞xdtt4+t2+1 Answered by mathmax by abdo last updated on 21/May/20 letφ(x)=∫−∞xdtt4+t2+1⇒φ(x)=∫−∞0dtt4+t2+1+∫0xdtt4+t2+1⇒φ′(x)=1x4+x2+1polesofφ′?x4+x2+1=0⇒t2+t+1=0(x2=t)Δ=−3⇒t1=−1+32=ei2π3andt2=e−i2π3⇒φ′(x)=1(x2−ei2π3)(x2−e−i2π3)=1(x−eiπ3)(x+eiπ3)(x−e−iπ3)(x+e−iπ3)=ax−eiπ3+b(x+eiπ3)+cx−e−iπ3+dx+e−iπ3a=12eiπ3(2isin(2π3))=e−iπ34i×32=e−iπ32i3b=1−2eiπ3(2isin(2π3))=e−iπ3−4i×32=−e−iπ32i3c=12e−iπ3(−2isin(2π3))=−eiπ34i×32=−eiπ32i3d=1−2e−iπ3(−2isin(2π3))=eiπ32i3⇒φ(n)(x)=a(−1)n−1(n−1)!(x−eiπ3)n+b(−1)n−1(n−1)!(x+eiπ3)n+c(−1)n−1(n−1)!(x−e−iπ3)n+d(−1)n−1(n−1)!(x+e−iπ3)n⇒φ(n)(0)=(−1)n−1(n−1)!{a(−1)ne−inπ3+be−inπ3+c(−1)neinπ3+deinπ3}φ(x)=∑n=0∞φ(n)(0)n!xn…. Commented by mathmax by abdo last updated on 21/May/20 antherwaywehaveφ′(x)=1(x2−ei2π3)(x2−e−i2π3)=12isin(π3)(1x2−ei2π3−1x2−e−i2π3)=1i3{1x2−ei2π3−1x2−e−i2π3}=1i3(e−i2π3e−i2π3x2−1−ei2π3ei2π3−1)=1i3(−e−i2π31−(e−iπ3x)2+ei2π31−(eiπ3x)2)for∣x∣<1wegetφ′(x)=ei2π3i3∑n=0∞(eiπ3x)n−e−i2π3i3∑n=0∞(e−iπ3x)nφ(x)=ei2π3i3∑n=0∞einπ3xn+1n+1−e−i2π3i3∑n=0∞e−inπ3xn+1n+1+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-calculate-n-0-x-n-4n-2-1-with-x-lt-1-2-find-the-value-of-n-0-1-4n-2-1-and-n-0-1-n-4n-2-1-Next Next post: 1-cot-2-x-1-sin-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.