Menu Close

developp-at-integr-serie-x-dt-t-4-t-2-1-




Question Number 94333 by mathmax by abdo last updated on 18/May/20
developp at integr serie ∫_(−∞) ^x  (dt/(t^4  +t^2  +1))
developpatintegrseriexdtt4+t2+1
Answered by mathmax by abdo last updated on 21/May/20
let ϕ(x) =∫_(−∞) ^x  (dt/(t^4  +t^2  +1)) ⇒ϕ(x) =∫_(−∞) ^0  (dt/(t^4  +t^2  +1)) +∫_0 ^x  (dt/(t^4  +t^2  +1))  ⇒ϕ^′ (x) =(1/(x^4  +x^2  +1))  poles of ϕ^′ ?  x^4  +x^2  +1 =0 ⇒t^2  +t+1 =0   (x^2  =t)  Δ =−3 ⇒t_1 =((−1+(√3))/2) =e^(i((2π)/3))  and t_2 =e^(−((i2π)/3))  ⇒  ϕ^′ (x) =(1/((x^2 −e^((i2π)/3) )(x^2 −e^(−((i2π)/3)) ))) =(1/((x−e^((iπ)/3) )(x+e^((iπ)/3) )(x−e^(−((iπ)/3)) )(x+e^(−((iπ)/3)) )))  =(a/(x−e^((iπ)/3) )) +(b/((x+e^((iπ)/3) ))) +(c/(x−e^(−((iπ)/3)) )) +(d/(x+e^(−((iπ)/3)) ))  a =(1/(2e^((iπ)/3) (2i sin(((2π)/3))))) =(e^(−((iπ)/3)) /(4i ×((√3)/2))) =(e^(−((iπ)/3)) /(2i(√3)))  b =(1/(−2e^((iπ)/3) (2isin(((2π)/3))))) =(e^(−((iπ)/3)) /(−4i×((√3)/2))) =−(e^(−((iπ)/3)) /(2i(√3)))  c =(1/(2e^(−((iπ)/3)) (−2isin(((2π)/3))))) =−(e^((iπ)/3) /(4i×((√3)/2))) =−(e^((iπ)/3) /(2i(√3)))  d =(1/(−2e^(−((iπ)/3)) (−2i sin(((2π)/3))))) =(e^((iπ)/3) /(2i(√3))) ⇒  ϕ^((n)) (x) =((a(−1)^(n−1) (n−1)!)/((x−e^((iπ)/3) )^n )) +((b(−1)^(n−1) (n−1)!)/((x+e^((iπ)/3) )^n )) +((c(−1)^(n−1) (n−1)!)/((x−e^(−((iπ)/3)) )^n ))  +((d(−1)^(n−1) (n−1)!)/((x+e^(−((iπ)/3)) )^n )) ⇒ϕ^((n)) (0) =  (−1)^(n−1) (n−1)! {a(−1)^n  e^(−((inπ)/3))  +b e^(−((inπ)/3))  +c (−1)^n  e^((inπ)/3)  +d e^((inπ)/3) }  ϕ(x)  =Σ_(n=0) ^∞  ((ϕ^((n)) (0))/(n!)) x^n  ....
letφ(x)=xdtt4+t2+1φ(x)=0dtt4+t2+1+0xdtt4+t2+1φ(x)=1x4+x2+1polesofφ?x4+x2+1=0t2+t+1=0(x2=t)Δ=3t1=1+32=ei2π3andt2=ei2π3φ(x)=1(x2ei2π3)(x2ei2π3)=1(xeiπ3)(x+eiπ3)(xeiπ3)(x+eiπ3)=axeiπ3+b(x+eiπ3)+cxeiπ3+dx+eiπ3a=12eiπ3(2isin(2π3))=eiπ34i×32=eiπ32i3b=12eiπ3(2isin(2π3))=eiπ34i×32=eiπ32i3c=12eiπ3(2isin(2π3))=eiπ34i×32=eiπ32i3d=12eiπ3(2isin(2π3))=eiπ32i3φ(n)(x)=a(1)n1(n1)!(xeiπ3)n+b(1)n1(n1)!(x+eiπ3)n+c(1)n1(n1)!(xeiπ3)n+d(1)n1(n1)!(x+eiπ3)nφ(n)(0)=(1)n1(n1)!{a(1)neinπ3+beinπ3+c(1)neinπ3+deinπ3}φ(x)=n=0φ(n)(0)n!xn.
Commented by mathmax by abdo last updated on 21/May/20
anther way we have ϕ^′ (x) =(1/((x^2  −e^((i2π)/3) )(x^2 −e^(−((i2π)/3)) )))  =(1/(2isin((π/3))))((1/(x^2 −e^((i2π)/3) )) −(1/(x^2 −e^(−((i2π)/3)) )) ) =(1/(i(√3))){ (1/(x^2 −e^((i2π)/3) ))−(1/(x^2  −e^(−((i2π)/3)) ))}  =(1/(i(√3)))(  (e^(−((i2π)/3)) /(e^(−((i2π)/3)) x^2 −1)) −(e^((i2π)/3) /(e^((i2π)/3) −1))) =(1/(i(√3)))(− (e^(−((i2π)/3)) /(1−(e^(−((iπ)/3)) x)^2 )) +(e^((i2π)/3) /(1−(e^((iπ)/3) x)^2 )))  for ∣x∣<1 we get ϕ^′ (x) =(e^((i2π)/3) /(i(√3))) Σ_(n=0) ^∞ (e^((iπ)/3) x)^n  −(e^(−((i2π)/3)) /(i(√3))) Σ_(n=0) ^∞  (e^(−((iπ)/3)) x)^n   ϕ(x) =(e^((i2π)/3) /(i(√3))) Σ_(n=0) ^∞  e^((inπ)/3)  (x^(n+1) /(n+1)) −(e^(−((i2π)/3)) /(i(√3))) Σ_(n=0) ^∞  e^(−((inπ)/3))  (x^(n+1) /(n+1)) +C
antherwaywehaveφ(x)=1(x2ei2π3)(x2ei2π3)=12isin(π3)(1x2ei2π31x2ei2π3)=1i3{1x2ei2π31x2ei2π3}=1i3(ei2π3ei2π3x21ei2π3ei2π31)=1i3(ei2π31(eiπ3x)2+ei2π31(eiπ3x)2)forx∣<1wegetφ(x)=ei2π3i3n=0(eiπ3x)nei2π3i3n=0(eiπ3x)nφ(x)=ei2π3i3n=0einπ3xn+1n+1ei2π3i3n=0einπ3xn+1n+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *