Menu Close

developp-at-intergr-serie-f-x-1-x-3-x-2-4-




Question Number 94338 by mathmax by abdo last updated on 18/May/20
developp at intergr serie f(x) =(1/((x+3)(x^2  +4)))
developpatintergrserief(x)=1(x+3)(x2+4)
Answered by mathmax by abdo last updated on 18/May/20
fist let find f^((n)) (0),  f(x)=(1/((x+3)(x−2i)(x+2i))) =(a/(x+3)) +(b/(x−2i)) +(c/(x+2i))  a =(1/(13))        b =(1/((2i+3)4i))  and c =(1/(−4i(−2i+3))) ⇒  f(x) =(1/(13(x+3))) +(1/(i(8i+12)(x−2i))) +(1/(4i(2i−3)(x+2i))) ⇒  f^((n)) (x) =(1/(13))×(((−1)^n n!)/((x+3)^(n+1) )) −(i/(8i+12))×(((−1)^n n!)/((x−2i)^(n+1) )) −((i(−1)^n n!)/((8i−12)(x+2i)^(n+1) ))  ⇒f^((n)) (0) =(1/(13))×(((−1)^n n!)/3^(n+1) )−(i/(8i+12))  (((−1)^n n!)/((−2i)^(n+1) ))−((i(−1)^n n!)/((8i−12)(2i)^(n+1) ))  f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  ⇒f(x) =(1/(13))Σ_(n=0) ^∞  (((−1)^n )/3^(n+1) )x^n   −(i/(8i+12)) Σ (((−1)^n )/((−2i)^(n+1) ))x^n  −(i/(8i−12)) Σ_(n=0) ^∞  (((−1)^n )/((2i)^(n+1) )) x^n
fistletfindf(n)(0),f(x)=1(x+3)(x2i)(x+2i)=ax+3+bx2i+cx+2ia=113b=1(2i+3)4iandc=14i(2i+3)f(x)=113(x+3)+1i(8i+12)(x2i)+14i(2i3)(x+2i)f(n)(x)=113×(1)nn!(x+3)n+1i8i+12×(1)nn!(x2i)n+1i(1)nn!(8i12)(x+2i)n+1f(n)(0)=113×(1)nn!3n+1i8i+12(1)nn!(2i)n+1i(1)nn!(8i12)(2i)n+1f(x)=n=0f(n)(0)n!xnf(x)=113n=0(1)n3n+1xni8i+12Σ(1)n(2i)n+1xni8i12n=0(1)n(2i)n+1xn

Leave a Reply

Your email address will not be published. Required fields are marked *