developp-at-laurent-series-1-f-z-1-z-2-2-g-z-3-z-2-3z-2-3-h-z-1-z-2-4- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 63560 by mathmax by abdo last updated on 05/Jul/19 developpatlaurentseries1)f(z)=1z−22)g(z)=3z2−3z+23)h(z)=1z2+4 Commented by mathmax by abdo last updated on 05/Jul/19 theformofLaurentserieis∑n=0∞an(z−z0)n+∑k=1∞a−k(z−z0)−k1)wehavef(z)=1z−2=−12(1−z2)case1∣z2∣<1⇒f(z)=−12∑n=0∞(z2)n=−12∑n=0∞zn2ncase2∣z2∣>1f(z)=1z(1−2z)and∣2z∣<1⇒f(z)=1z∑n=0∞(2z)n=∑n=0∞2nzn+1=1z+2z2+4z3+…. Commented by mathmax by abdo last updated on 10/Jul/19 2)z2−3z+2=0→Δ=9−8=1⇒z1=3+12=2andz2=3−12=1⇒g(z)=3(z−2)(z−1)=−3(1z−1−1z−2)if∣z∣<1⇒∣z∣<2⇒g(z)=3(11−z−12−z)=3(11−z−12(1−z2))=3{∑n=0∞zn−∑n=0∞(z2)n}=3∑n=0∞(1−12n)znif1<∣z∣<2⇒∣1z∣<1and∣z2∣<1⇒g(z)=3{1z(1z−1)−12(1−z2)}=−3z11−1z−3211−z2=−3z∑n=0∞(1z)n−32∑n=0∞(z2)n=−3∑n=0∞1zn+1−32∑n=0∞zn2n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: p-x-p-x-2-2X-2-2X-4-p-x-Next Next post: Question-63561 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.