Menu Close

developp-at-laurent-series-1-f-z-1-z-2-2-g-z-3-z-2-3z-2-3-h-z-1-z-2-4-




Question Number 63560 by mathmax by abdo last updated on 05/Jul/19
developp at laurent series  1) f(z) =(1/(z−2))  2)g(z) =(3/(z^2 −3z +2))  3)h(z) =(1/(z^2 +4))
developpatlaurentseries1)f(z)=1z22)g(z)=3z23z+23)h(z)=1z2+4
Commented by mathmax by abdo last updated on 05/Jul/19
the form of Laurent serie is Σ_(n=0) ^∞ a_n (z−z_0 )^n  +Σ_(k=1) ^∞  a_(−k) (z−z_0 )^(−k)   1) we have f(z) =(1/(z−2)) =−(1/(2(1−(z/2))))  case1  ∣(z/2)∣<1 ⇒f(z)=−(1/2) Σ_(n=0) ^∞  ((z/2))^n  =−(1/2) Σ_(n=0) ^∞  (z^n /2^n )  case 2  ∣(z/2)∣>1  f(z) =(1/(z(1−(2/z))))  and ∣(2/z)∣<1 ⇒f(z)=(1/z)Σ_(n=0) ^∞  ((2/z))^n   =Σ_(n=0) ^∞   (2^n /z^(n+1) )  =(1/z) +(2/z^2 ) +(4/z^3 ) +....
theformofLaurentserieisn=0an(zz0)n+k=1ak(zz0)k1)wehavef(z)=1z2=12(1z2)case1z2∣<1f(z)=12n=0(z2)n=12n=0zn2ncase2z2∣>1f(z)=1z(12z)and2z∣<1f(z)=1zn=0(2z)n=n=02nzn+1=1z+2z2+4z3+.
Commented by mathmax by abdo last updated on 10/Jul/19
2) z^2 −3z +2 =0 →Δ=9−8=1 ⇒z_1 =((3+1)/2) =2 and z_2 =((3−1)/2) =1 ⇒  g(z) =(3/((z−2)(z−1))) =−3((1/(z−1))−(1/(z−2)))  if ∣z∣<1 ⇒∣z∣<2 ⇒g(z)=3((1/(1−z)) −(1/(2−z)))  =3((1/(1−z)) −(1/(2(1−(z/2))))) =3{Σ_(n=0) ^∞ z^n −Σ_(n=0) ^∞  ((z/2))^n }  =3Σ_(n=0) ^∞  (1−(1/2^n ))z^n   if 1<∣z∣<2 ⇒∣(1/z)∣<1 and ∣(z/2)∣<1 ⇒  g(z) =3{ (1/(z((1/z)−1))) −(1/(2(1−(z/2))))}=((−3)/z) (1/(1−(1/z))) −(3/2) (1/(1−(z/2)))  =((−3)/z)Σ_(n=0) ^∞  ((1/z))^n  −(3/2)Σ_(n=0) ^∞  ((z/2))^n   =−3Σ_(n=0) ^∞  (1/z^(n+1) ) −(3/2) Σ_(n=0) ^∞  (z^n /2^n )
2)z23z+2=0Δ=98=1z1=3+12=2andz2=312=1g(z)=3(z2)(z1)=3(1z11z2)ifz∣<1⇒∣z∣<2g(z)=3(11z12z)=3(11z12(1z2))=3{n=0znn=0(z2)n}=3n=0(112n)znif1<∣z∣<2⇒∣1z∣<1andz2∣<1g(z)=3{1z(1z1)12(1z2)}=3z111z3211z2=3zn=0(1z)n32n=0(z2)n=3n=01zn+132n=0zn2n

Leave a Reply

Your email address will not be published. Required fields are marked *