Menu Close

developp-f-x-e-x-x-1-at-integr-serie-




Question Number 33293 by abdo imad last updated on 14/Apr/18
developp f(x) = (e^x /(x−1)) at integr serie
$${developp}\:{f}\left({x}\right)\:=\:\frac{{e}^{{x}} }{{x}−\mathrm{1}}\:{at}\:{integr}\:{serie} \\ $$
Commented by abdo imad last updated on 19/Apr/18
−f(x) = (e^x /(1−x))  so if ∣x∣<1  we have   −f(x) = (Σ_(n=0) ^∞   (x^n /(n!)))(Σ_(n=0) ^∞  x^n )=(Σ_(n=0) ^∞ a_n x^n )( Σ_(n=0) ^∞ b_n x^n )  =Σ_(n=0) ^∞  c_n  x^n   with c_n =Σ_(i+j=n) a_i  b_j  =Σ_(i=0) ^n a_i b_(n−i)   =Σ_(i=0) ^n  (1/(i!)) ⇒ f(x) =−Σ_(n=0) ^∞ ( Σ_(i=0) ^n  (1/(i!)))x^n   .
$$−{f}\left({x}\right)\:=\:\frac{{e}^{{x}} }{\mathrm{1}−{x}}\:\:{so}\:{if}\:\mid{x}\mid<\mathrm{1}\:\:{we}\:{have}\: \\ $$$$−{f}\left({x}\right)\:=\:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{{n}} }{{n}!}\right)\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} \right)=\left(\sum_{{n}=\mathrm{0}} ^{\infty} {a}_{{n}} {x}^{{n}} \right)\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} {b}_{{n}} {x}^{{n}} \right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:{c}_{{n}} \:{x}^{{n}} \:\:{with}\:{c}_{{n}} =\sum_{{i}+{j}={n}} {a}_{{i}} \:{b}_{{j}} \:=\sum_{{i}=\mathrm{0}} ^{{n}} {a}_{{i}} {b}_{{n}−{i}} \\ $$$$=\sum_{{i}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{i}!}\:\Rightarrow\:{f}\left({x}\right)\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \left(\:\sum_{{i}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{i}!}\right){x}^{{n}} \:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *