Menu Close

developp-f-x-e-x-x-1-at-integr-serie-




Question Number 33293 by abdo imad last updated on 14/Apr/18
developp f(x) = (e^x /(x−1)) at integr serie
developpf(x)=exx1atintegrserie
Commented by abdo imad last updated on 19/Apr/18
−f(x) = (e^x /(1−x))  so if ∣x∣<1  we have   −f(x) = (Σ_(n=0) ^∞   (x^n /(n!)))(Σ_(n=0) ^∞  x^n )=(Σ_(n=0) ^∞ a_n x^n )( Σ_(n=0) ^∞ b_n x^n )  =Σ_(n=0) ^∞  c_n  x^n   with c_n =Σ_(i+j=n) a_i  b_j  =Σ_(i=0) ^n a_i b_(n−i)   =Σ_(i=0) ^n  (1/(i!)) ⇒ f(x) =−Σ_(n=0) ^∞ ( Σ_(i=0) ^n  (1/(i!)))x^n   .
f(x)=ex1xsoifx∣<1wehavef(x)=(n=0xnn!)(n=0xn)=(n=0anxn)(n=0bnxn)=n=0cnxnwithcn=i+j=naibj=i=0naibni=i=0n1i!f(x)=n=0(i=0n1i!)xn.

Leave a Reply

Your email address will not be published. Required fields are marked *