Menu Close

developp-the-function-f-x-x-2pi-periodic-in-fourier-serie-f-even-




Question Number 26403 by abdo imad last updated on 25/Dec/17
developp the function f(x)=/x/ 2π  periodic in fourier serie .(f even)
developpthefunctionf(x)=/x/2πperiodicinfourierserie.(feven)
Commented by prakash jain last updated on 25/Dec/17
can you please clarify the question? Are you asking for Fourier series expansion of f(x)=|x|
Commented by abdo imad last updated on 25/Dec/17
yes fouries series not transform of fourier
yesfouriesseriesnottransformoffourier
Commented by abdo imad last updated on 28/Dec/17
f(x)= (a_0 /2)  +  Σ_(n=1) ^∝  a_n  cos(nx) with a_n =(2/T) ∫_([T])  f(x)cos(nx)dx  a_n = (2/π) ∫_0 ^π x cos(nx)dx and the integration by parts gives  a_n  =((2( (−1)^n −1))/(π n^2 ))  (π/2) a_0 = ∫_0 ^π  xdx = (π^2 /2)  ⇒a_0 =π  /x/= (π/2) + (2/π)  Σ_(n=1) ^∝  (((−1)^n −1)/n^2 ) cos(nx)⇒  /x/= (π/2)  − (4/π)  Σ_(n=1) ^∝   ((cos((2n+1)x))/((2n+1)^2 ))  .
f(x)=a02+n=1ancos(nx)withan=2T[T]f(x)cos(nx)dxan=2π0πxcos(nx)dxandtheintegrationbypartsgivesan=2((1)n1)πn2π2a0=0πxdx=π22a0=π/x/=π2+2πn=1(1)n1n2cos(nx)/x/=π24πn=1cos((2n+1)x)(2n+1)2.
Commented by prakash jain last updated on 28/Dec/17
Thanks.   when do use the notation /x/  you seem to mean ∣x∣ = absolute value  of x.
Thanks.whendousethenotation/x/youseemtomeanx=absolutevalueofx.
Commented by abdo imad last updated on 28/Dec/17
yes /x/ means absolute value.
yes/x/meansabsolutevalue.

Leave a Reply

Your email address will not be published. Required fields are marked *