Menu Close

df-of-f-x-x-x-y-y-




Question Number 60007 by meme last updated on 17/May/19
df of f(x)=x^x y^y
dfoff(x)=xxyy
Answered by alex041103 last updated on 18/May/19
if you mean f(x,y)=x^x y^y  then  df=(∂f/∂x)dx+(∂f/∂y)dy=  =y^y (∂/∂x)(x^x )dx+x^x (∂/∂y)(y^y )dy=  In general let′s find (∂/∂z)z^z :  z^z =e^(z ln(z)) ⇒(∂/∂z)(z^z )=(∂/∂z)(e^(z ln(z)) )=  =(∂/(∂(z ln(z))))(e^(z ln(z)) )×((∂(z ln(z)))/∂z)=  =e^(z ln(z)) ×(1×ln(z)+z×(1/z))=  =z^z (1+ln(z))=((∂(z^z ))/∂z)  ⇒df=x^x y^y (1+ln(x))dx+x^x y^y (1+ln(y))dy  ⇒df=f[(1+ln(x))dx+(1+ln(y))dy]  you can go a little bit further:  (df/f)=dx+ln(x)dx+dy+ln(y)dy=  =d(x+y)+ln(x^dx )+ln(y^dy )=  =d(x+y)+ln(x^dx y^dy )  ⇒df=x^x y^y [d(x+y)+ln(x^dx y^dy )]
ifyoumeanf(x,y)=xxyythendf=fxdx+fydy==yyx(xx)dx+xxy(yy)dy=Ingeneralletsfindzzz:zz=ezln(z)z(zz)=z(ezln(z))==(zln(z))(ezln(z))×(zln(z))z==ezln(z)×(1×ln(z)+z×1z)==zz(1+ln(z))=(zz)zdf=xxyy(1+ln(x))dx+xxyy(1+ln(y))dydf=f[(1+ln(x))dx+(1+ln(y))dy]youcangoalittlebitfurther:dff=dx+ln(x)dx+dy+ln(y)dy==d(x+y)+ln(xdx)+ln(ydy)==d(x+y)+ln(xdxydy)df=xxyy[d(x+y)+ln(xdxydy)]

Leave a Reply

Your email address will not be published. Required fields are marked *