Menu Close

differenciatethefollowing-i-x-x-sinx-lnx-ii-sin-1-tanhx-iii-1-x-2-1-x-2-




Question Number 54790 by Anju last updated on 11/Feb/19
differenciatethefollowing  i)x^x +(sinx)^(lnx) =  ii)sin^(−1) (tanhx)=  iii)(√(1+x^2 /1−x^2 =))
differenciatethefollowingi)xx+(sinx)lnx=ii)sin1(tanhx)=iii)1+x2/1x2=
Commented by maxmathsup by imad last updated on 11/Feb/19
1) let f(x)=x^x  +(sinx)^(ln(x))  ⇒f(x)=e^(xln(x))  + e^(ln(x)ln(sinx))     with x>0 ⇒  f^′ (x) =(xlnx)^′  x^x   +(lnx ln(sinx))^′  (sinx)^(ln(x))   =(lnx +1) x^x  +(((ln(sinx))/x) +lnx ((cosx)/(sinx)))(sinx)^(ln(x))   =(1+ln(x))x^x  + (((ln(sinx))/x) +lnx cotan(x))(sinx)^(ln(x))  .
1)letf(x)=xx+(sinx)ln(x)f(x)=exln(x)+eln(x)ln(sinx)withx>0f(x)=(xlnx)xx+(lnxln(sinx))(sinx)ln(x)=(lnx+1)xx+(ln(sinx)x+lnxcosxsinx)(sinx)ln(x)=(1+ln(x))xx+(ln(sinx)x+lnxcotan(x))(sinx)ln(x).
Commented by maxmathsup by imad last updated on 11/Feb/19
ii) let g(x)=arcsin(tanhx)  we have tanhx =((sh(x))/(ch(x))) =((e^x −e^(−x) )/(e^x  +e^(−x) )) =((e^(2x) −1)/(e^(2x)  +1)) ⇒  g(x)=arcsin(((e^(2x) −1)/(e^(2x)  +1))) ⇒g^′ (x)=(((((e^(2x) −1)/(e^(2x)  +1)))^′ )/( (√(1−(((e^(2x) −1)/(e^(2x)  +1)))^2 ))))  but  (((e^(2x) −1)/(e^(2x)  +1)))^′  =((2e^(2x) (e^(2x)  +1) −2e^(2x) (e^(2x) −1))/((e^(2x)  +1)^2 )) =((4 e^(2x) )/((e^(2x)  +1)^2 )) ⇒  g^′ (x) =  ((4 e^(2x) )/((e^(2x)  +1)^2 ((√((e^(2x)  +1)^2 −(e^(2x) −1)^2 ))/(e^(2x)  +1)))) =((4 e^(2x) )/((e^(2x)  +1)(√(e^(4x)  +2e^(2x) +1−e^(4x) +2e^(2x) −1))))  =((4 e^(2x) )/((1+e^(2x) )2e^x )) =((2e^x )/((1+ e^(2x) ))) ⇒g^′ (x) =((2e^x )/((1+e^(2x) ))) .
ii)letg(x)=arcsin(tanhx)wehavetanhx=sh(x)ch(x)=exexex+ex=e2x1e2x+1g(x)=arcsin(e2x1e2x+1)g(x)=(e2x1e2x+1)1(e2x1e2x+1)2but(e2x1e2x+1)=2e2x(e2x+1)2e2x(e2x1)(e2x+1)2=4e2x(e2x+1)2g(x)=4e2x(e2x+1)2(e2x+1)2(e2x1)2e2x+1=4e2x(e2x+1)e4x+2e2x+1e4x+2e2x1=4e2x(1+e2x)2ex=2ex(1+e2x)g(x)=2ex(1+e2x).
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Feb/19
1)y=x^x +(sinx)^(lnx)   y=u+v  (dy/dx)=(du/dx)+(dv/dx)  u=x^x   lnu=xlnx  (1/u)(du/dx)=x×(1/x)+lnx×1  (du/dx)=x^x (1+lnx)  v=(sinx)^(lnx)   lnv=lnxln(sinx)  (1/v)×(dv/dx)=lnx×(1/(sinx))×cosx+ln(sinx)×(1/x)  (dv/dx)=(sinx)^(lnx) [cotxlnx+((ln(sinx))/x)]  so answer is  (du/dx)+(dv/dx)  =x^x (1+lnx)+(sinx)^(lnx) [cotxlnx+((ln(sinx))/x)]
1)y=xx+(sinx)lnxy=u+vdydx=dudx+dvdxu=xxlnu=xlnx1ududx=x×1x+lnx×1dudx=xx(1+lnx)v=(sinx)lnxlnv=lnxln(sinx)1v×dvdx=lnx×1sinx×cosx+ln(sinx)×1xdvdx=(sinx)lnx[cotxlnx+ln(sinx)x]soanswerisdudx+dvdx=xx(1+lnx)+(sinx)lnx[cotxlnx+ln(sinx)x]
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Feb/19
iii)y=(√((1+x^2 )/(1−x^2 )))   lny=(1/2){ln(1+x^2 )−ln(1−x^2 )}  (1/y)(dy/dx)=(1/2){((2x)/(1+x^2 ))−((−2x)/(1−x^2 ))}  (1/y)(dy/dx)=x{((1−x^2 +1+x^2 )/(1−x^4 ))}  (dy/dx)=(√((1+x^2 )/(1−x^2 ))) (((2x)/(1−x^4 )))
iii)y=1+x21x2lny=12{ln(1+x2)ln(1x2)}1ydydx=12{2x1+x22x1x2}1ydydx=x{1x2+1+x21x4}dydx=1+x21x2(2x1x4)
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Feb/19
ii)y=sin^(−1) (tanhx)  (dy/dx)=(1/( (√(1−(tanhx)^2 ))))×sech^2 x
ii)y=sin1(tanhx)dydx=11(tanhx)2×sech2x

Leave a Reply

Your email address will not be published. Required fields are marked *