Question Number 54790 by Anju last updated on 11/Feb/19
$${differenciatethefollowing} \\ $$$$\left.{i}\right){x}^{{x}} +\left({sinx}\right)^{{lnx}} = \\ $$$$\left.{ii}\right){sin}^{−\mathrm{1}} \left({tanhx}\right)= \\ $$$$\left.{iii}\right)\sqrt{\mathrm{1}+{x}^{\mathrm{2}} /\mathrm{1}−{x}^{\mathrm{2}} =} \\ $$
Commented by maxmathsup by imad last updated on 11/Feb/19
$$\left.\mathrm{1}\right)\:{let}\:{f}\left({x}\right)={x}^{{x}} \:+\left({sinx}\right)^{{ln}\left({x}\right)} \:\Rightarrow{f}\left({x}\right)={e}^{{xln}\left({x}\right)} \:+\:{e}^{{ln}\left({x}\right){ln}\left({sinx}\right)} \:\:\:\:{with}\:{x}>\mathrm{0}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\left({xlnx}\right)^{'} \:{x}^{{x}} \:\:+\left({lnx}\:{ln}\left({sinx}\right)\right)^{'} \:\left({sinx}\right)^{{ln}\left({x}\right)} \\ $$$$=\left({lnx}\:+\mathrm{1}\right)\:{x}^{{x}} \:+\left(\frac{{ln}\left({sinx}\right)}{{x}}\:+{lnx}\:\frac{{cosx}}{{sinx}}\right)\left({sinx}\right)^{{ln}\left({x}\right)} \\ $$$$=\left(\mathrm{1}+{ln}\left({x}\right)\right){x}^{{x}} \:+\:\left(\frac{{ln}\left({sinx}\right)}{{x}}\:+{lnx}\:{cotan}\left({x}\right)\right)\left({sinx}\right)^{{ln}\left({x}\right)} \:. \\ $$
Commented by maxmathsup by imad last updated on 11/Feb/19
$$\left.{ii}\right)\:{let}\:{g}\left({x}\right)={arcsin}\left({tanhx}\right)\:\:{we}\:{have}\:{tanhx}\:=\frac{{sh}\left({x}\right)}{{ch}\left({x}\right)}\:=\frac{{e}^{{x}} −{e}^{−{x}} }{{e}^{{x}} \:+{e}^{−{x}} }\:=\frac{{e}^{\mathrm{2}{x}} −\mathrm{1}}{{e}^{\mathrm{2}{x}} \:+\mathrm{1}}\:\Rightarrow \\ $$$${g}\left({x}\right)={arcsin}\left(\frac{{e}^{\mathrm{2}{x}} −\mathrm{1}}{{e}^{\mathrm{2}{x}} \:+\mathrm{1}}\right)\:\Rightarrow{g}^{'} \left({x}\right)=\frac{\left(\frac{{e}^{\mathrm{2}{x}} −\mathrm{1}}{{e}^{\mathrm{2}{x}} \:+\mathrm{1}}\right)^{'} }{\:\sqrt{\mathrm{1}−\left(\frac{{e}^{\mathrm{2}{x}} −\mathrm{1}}{{e}^{\mathrm{2}{x}} \:+\mathrm{1}}\right)^{\mathrm{2}} }}\:\:{but} \\ $$$$\left(\frac{{e}^{\mathrm{2}{x}} −\mathrm{1}}{{e}^{\mathrm{2}{x}} \:+\mathrm{1}}\right)^{'} \:=\frac{\mathrm{2}{e}^{\mathrm{2}{x}} \left({e}^{\mathrm{2}{x}} \:+\mathrm{1}\right)\:−\mathrm{2}{e}^{\mathrm{2}{x}} \left({e}^{\mathrm{2}{x}} −\mathrm{1}\right)}{\left({e}^{\mathrm{2}{x}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:=\frac{\mathrm{4}\:{e}^{\mathrm{2}{x}} }{\left({e}^{\mathrm{2}{x}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${g}^{'} \left({x}\right)\:=\:\:\frac{\mathrm{4}\:{e}^{\mathrm{2}{x}} }{\left({e}^{\mathrm{2}{x}} \:+\mathrm{1}\right)^{\mathrm{2}} \frac{\sqrt{\left({e}^{\mathrm{2}{x}} \:+\mathrm{1}\right)^{\mathrm{2}} −\left({e}^{\mathrm{2}{x}} −\mathrm{1}\right)^{\mathrm{2}} }}{{e}^{\mathrm{2}{x}} \:+\mathrm{1}}}\:=\frac{\mathrm{4}\:{e}^{\mathrm{2}{x}} }{\left({e}^{\mathrm{2}{x}} \:+\mathrm{1}\right)\sqrt{{e}^{\mathrm{4}{x}} \:+\mathrm{2}{e}^{\mathrm{2}{x}} +\mathrm{1}−{e}^{\mathrm{4}{x}} +\mathrm{2}{e}^{\mathrm{2}{x}} −\mathrm{1}}} \\ $$$$=\frac{\mathrm{4}\:{e}^{\mathrm{2}{x}} }{\left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)\mathrm{2}{e}^{{x}} }\:=\frac{\mathrm{2}{e}^{{x}} }{\left(\mathrm{1}+\:{e}^{\mathrm{2}{x}} \right)}\:\Rightarrow{g}^{'} \left({x}\right)\:=\frac{\mathrm{2}{e}^{{x}} }{\left(\mathrm{1}+{e}^{\mathrm{2}{x}} \right)}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Feb/19
$$\left.\mathrm{1}\right){y}={x}^{{x}} +\left({sinx}\right)^{{lnx}} \\ $$$${y}={u}+{v} \\ $$$$\frac{{dy}}{{dx}}=\frac{{du}}{{dx}}+\frac{{dv}}{{dx}} \\ $$$${u}={x}^{{x}} \\ $$$${lnu}={xlnx} \\ $$$$\frac{\mathrm{1}}{{u}}\frac{{du}}{{dx}}={x}×\frac{\mathrm{1}}{{x}}+{lnx}×\mathrm{1} \\ $$$$\frac{{du}}{{dx}}={x}^{{x}} \left(\mathrm{1}+{lnx}\right) \\ $$$${v}=\left({sinx}\right)^{{lnx}} \\ $$$${lnv}={lnxln}\left({sinx}\right) \\ $$$$\frac{\mathrm{1}}{{v}}×\frac{{dv}}{{dx}}={lnx}×\frac{\mathrm{1}}{{sinx}}×{cosx}+{ln}\left({sinx}\right)×\frac{\mathrm{1}}{{x}} \\ $$$$\frac{{dv}}{{dx}}=\left({sinx}\right)^{{lnx}} \left[{cotxlnx}+\frac{{ln}\left({sinx}\right)}{{x}}\right] \\ $$$${so}\:{answer}\:{is} \\ $$$$\frac{{du}}{{dx}}+\frac{{dv}}{{dx}} \\ $$$$={x}^{{x}} \left(\mathrm{1}+{lnx}\right)+\left({sinx}\right)^{{lnx}} \left[{cotxlnx}+\frac{{ln}\left({sinx}\right)}{{x}}\right] \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Feb/19
$$\left.{iii}\right){y}=\sqrt{\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }}\: \\ $$$${lny}=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\right\} \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }−\frac{−\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\right\} \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}={x}\left\{\frac{\mathrm{1}−{x}^{\mathrm{2}} +\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{4}} }\right\} \\ $$$$\frac{{dy}}{{dx}}=\sqrt{\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{2}} }}\:\left(\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{4}} }\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Feb/19
$$\left.{ii}\right){y}={sin}^{−\mathrm{1}} \left({tanhx}\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\left({tanhx}\right)^{\mathrm{2}} }}×{sech}^{\mathrm{2}} {x} \\ $$