Question Number 169358 by Mastermind last updated on 29/Apr/22
$${Differentiate}\:{from}\:{first}\:{principle} \\ $$$${y}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{5}} \\ $$
Answered by bobhans last updated on 29/Apr/22
$$\:\:\frac{{dy}}{{dx}}\:=\:\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left({x}+{p}\right)−{f}\left({x}\right)}{{p}} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\left({x}+{p}\right)^{\mathrm{2}} +\mathrm{5}}\:−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{5}}}{{p}} \\ $$$$\:\:\:\:\:\:\:\:=\:\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({x}^{\mathrm{2}} +\mathrm{5}\right)−\left({x}^{\mathrm{2}} +\mathrm{2}{px}+{p}^{\mathrm{2}} +\mathrm{5}\right)}{{p}\left({x}^{\mathrm{2}} +\mathrm{5}\right)\left[\left({x}+{p}\right)^{\mathrm{2}} +\mathrm{5}\:\right]} \\ $$$$\:\:\:\:\:\:=\:\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{5}\right)\left[\left({x}+{p}\right)^{\mathrm{2}} +\mathrm{5}\:\right]}\:.\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{2}{px}−{p}^{\mathrm{2}} }{{p}} \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{2}} }\:.\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{2}{x}−{p}}{\mathrm{1}}\:=\:\frac{−\mathrm{2}{x}}{\left({x}^{\mathrm{2}} +\mathrm{5}\right)^{\mathrm{2}} }\: \\ $$