Menu Close

Differentiate-from-first-principle-y-1-x-2-5-




Question Number 169358 by Mastermind last updated on 29/Apr/22
Differentiate from first principle  y=(1/(x^2 +5))
Differentiatefromfirstprincipley=1x2+5
Answered by bobhans last updated on 29/Apr/22
  (dy/dx) = lim_(p→0)  ((f(x+p)−f(x))/p)           = lim_(p→0)  (((1/((x+p)^2 +5)) −(1/(x^2 +5)))/p)          = lim_(p→0)  (((x^2 +5)−(x^2 +2px+p^2 +5))/(p(x^2 +5)[(x+p)^2 +5 ]))        = lim_(p→0) (1/((x^2 +5)[(x+p)^2 +5 ])) .lim_(p→0)  ((−2px−p^2 )/p)      = (1/((x^2 +5)^2 )) .lim_(p→0)  ((−2x−p)/1) = ((−2x)/((x^2 +5)^2 ))
dydx=limp0f(x+p)f(x)p=limp01(x+p)2+51x2+5p=limp0(x2+5)(x2+2px+p2+5)p(x2+5)[(x+p)2+5]=limp01(x2+5)[(x+p)2+5].limp02pxp2p=1(x2+5)2.limp02xp1=2x(x2+5)2

Leave a Reply

Your email address will not be published. Required fields are marked *