Menu Close

Differentiate-from-first-principle-y-log-x-a-Mastermind-




Question Number 169366 by Mastermind last updated on 29/Apr/22
Differentiate from first principle  y=log_x a    Mastermind
Differentiatefromfirstprincipley=logxaMastermind
Commented by bobhans last updated on 29/Apr/22
  y = ((ln a)/(ln x)) ⇒(dy/dx) = lim_(h→0)  ((((ln a)/(ln (x+h))) − ((ln a)/(ln x)))/h)   (dy/dx) = ln a lim_(h→0)  ((ln x−ln (x+h))/(h ln x ln (x+h)))   (dy/dx) = −((ln a)/(ln^2 (x))). lim_(h→0)  ((ln (((x+h)/x)))/h)           =−((ln a)/(ln^2 (x))) .lim_(h→0)  ((ln (1+(h/x)))/h)           =−((ln a)/(x ln^2 (x)))
y=lnalnxdydx=limh0lnaln(x+h)lnalnxhdydx=lnalimh0lnxln(x+h)hlnxln(x+h)dydx=lnaln2(x).limh0ln(x+hx)h=lnaln2(x).limh0ln(1+hx)h=lnaxln2(x)

Leave a Reply

Your email address will not be published. Required fields are marked *