Menu Close

differentiate-from-the-first-principle-y-1-x-




Question Number 35933 by mondodotto@gmail.com last updated on 26/May/18
differentiate from  the first principle  y=(1/( (√x)))
$$\boldsymbol{\mathrm{differentiate}}\:\boldsymbol{\mathrm{from}} \\ $$$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{principle}} \\ $$$$\boldsymbol{\mathrm{y}}=\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}}} \\ $$
Answered by ajfour last updated on 26/May/18
dy=(1/( (√(x+dx))))−(1/( (√x)))      =(((√x)−(√(x+dx)))/( (√x)(√(x+dx)))) = (((√(x[))1−(1+(dx/(2x)))])/(∣x∣))   (dy/dx) = −(1/(2x(√x))) .
$${dy}=\frac{\mathrm{1}}{\:\sqrt{{x}+{dx}}}−\frac{\mathrm{1}}{\:\sqrt{{x}}} \\ $$$$\:\:\:\:=\frac{\sqrt{{x}}−\sqrt{{x}+{dx}}}{\:\sqrt{{x}}\sqrt{{x}+{dx}}}\:=\:\frac{\left.\sqrt{{x}\left[\right.}\mathrm{1}−\left(\mathrm{1}+\frac{{dx}}{\mathrm{2}{x}}\right)\right]}{\mid{x}\mid} \\ $$$$\:\frac{{dy}}{{dx}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{{x}}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *