Menu Close

Differentiate-sin-1-ln-x-cos-x-with-respect-to-tan-x-2-




Question Number 52006 by peter frank last updated on 01/Jan/19
Differentiate sin^(−1) [((ln x)/(cos x))]  with respect to tan x^2
Differentiatesin1[lnxcosx]withrespecttotanx2
Commented by MJS last updated on 02/Jan/19
I get (with no respect to anything)  (d/dx)[arcsin ((f(x))/(g(x)))]=((f′g−fg′)/(g(√(g^2 −f^2 ))))=  =((cos x +xln x sin x)/(xcos x (√((cos x)^2 −(ln x)^2  ))))
Iget(withnorespecttoanything)ddx[arcsinf(x)g(x)]=fgfggg2f2==cosx+xlnxsinxxcosx(cosx)2(lnx)2
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19
u=sin^(−1) (((lnx)/(cosx)))  v=tanx^2   (du/dv)=((du/dx)/(dv/dx))  u=sin^(−1) (((lnx)/(cosx)))  (du/dx)=(1/( (√(1−(((lnx)/(cosx)))^2 ))))×((cosx((1/x))−lnx(−sinx))/((cosx)^2 ))  =(du/dx)=(1/( (√(1−(((lnx)/(cosx)))^2 ))))×((((cosx)/x)+lnx(sinx))/((cosx)^2 ))  v=tanx^2   (dv/dx)=sec^2 (x^2 )×2x  (du/dv)=((du/dx)/(dv/dx))=[(1/( (√(1−(((lnx)/(cosx)))^2 ))))×((((cosx)/x)+sinx×lnx)/((cosx)^2 ))]×(1/(2xsec^2 (x^2 )))
u=sin1(lnxcosx)v=tanx2dudv=dudxdvdxu=sin1(lnxcosx)dudx=11(lnxcosx)2×cosx(1x)lnx(sinx)(cosx)2=dudx=11(lnxcosx)2×cosxx+lnx(sinx)(cosx)2v=tanx2dvdx=sec2(x2)×2xdudv=dudxdvdx=[11(lnxcosx)2×cosxx+sinx×lnx(cosx)2]×12xsec2(x2)
Commented by peter frank last updated on 02/Jan/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *