Differentiate-sin-1-ln-x-cos-x-with-respect-to-tan-x-2- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 52006 by peter frank last updated on 01/Jan/19 Differentiatesin−1[lnxcosx]withrespecttotanx2 Commented by MJS last updated on 02/Jan/19 Iget(withnorespecttoanything)ddx[arcsinf(x)g(x)]=f′g−fg′gg2−f2==cosx+xlnxsinxxcosx(cosx)2−(lnx)2 Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19 u=sin−1(lnxcosx)v=tanx2dudv=dudxdvdxu=sin−1(lnxcosx)dudx=11−(lnxcosx)2×cosx(1x)−lnx(−sinx)(cosx)2=dudx=11−(lnxcosx)2×cosxx+lnx(sinx)(cosx)2v=tanx2dvdx=sec2(x2)×2xdudv=dudxdvdx=[11−(lnxcosx)2×cosxx+sinx×lnx(cosx)2]×12xsec2(x2) Commented by peter frank last updated on 02/Jan/19 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-183078Next Next post: Question-183076 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.