Menu Close

Differentiate-tan-1-1-x-2-1-x-without-using-any-trigonometric-substitution-




Question Number 38232 by rahul 19 last updated on 23/Jun/18
Differentiate   tan^(−1) ((((√(1+x^2 ))−1)/x))    without using any trigonometric   substitution !
Differentiatetan1(1+x21x)withoutusinganytrigonometricsubstitution!
Commented by math khazana by abdo last updated on 23/Jun/18
we have f(x)=arctan(u(x))with   u(x)=(((√(1+x^2 )) −1)/x) = ((1+x^2 −1)/(x((√(1+x^2 )) +1))) = (x/( (√(1+x^2 ))+1))  (x≠0) ⇒f^′ (x)= ((u^′ (x))/(1+(u(x))^2 )) but  u^′ (x)= (((√(1+x^2 ))+1 −x((x/( (√(1+x^2 ))))))/(((√(1+x^2 ))+1)^2 ))  =((1+x^2  +(√(1+x^2 )) −x^2 )/( (√(1+x^2 ))((√(1+x^2 ))+1)^2 )) = ((1+(√(1+x^2 )))/( (√(1+x^2 ))((√(1+x^2 ))+1)^2 )) ⇒  f^′ (x) = ((1+(√(1+x^2 )))/( (√(1+x^2 ))((√(1+x^2 ))+1)^2 )) .  (1/(1+((x/( (√(1+x^2 )))) +1)^2 ))  =((1 +(√(1+x^2 )))/( (√(1+x^2 ((√(1+x^2 ))+1)^2 ))))    ((1+x^2 )/(1+x^2 +(x+(√(1+x^2 )))^2 ))  = (((√(1+x^2 )) +1+x^2 )/(((√(1+x^2  )) +1)^2 ( 1+x^2  +(x+(√(1+x^2 )))^2 )) .
wehavef(x)=arctan(u(x))withu(x)=1+x21x=1+x21x(1+x2+1)=x1+x2+1(x0)f(x)=u(x)1+(u(x))2butu(x)=1+x2+1x(x1+x2)(1+x2+1)2=1+x2+1+x2x21+x2(1+x2+1)2=1+1+x21+x2(1+x2+1)2f(x)=1+1+x21+x2(1+x2+1)2.11+(x1+x2+1)2=1+1+x21+x2(1+x2+1)21+x21+x2+(x+1+x2)2=1+x2+1+x2(1+x2+1)2(1+x2+(x+1+x2)2.
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18
let find the answer using trigo...  then without trigo...  y=tan^(−1) ((((√(1+x^2 )) −1)/x))  x=tank   (dx/dk)=sec^2 k=1+x^2   y=tan^(−1) (((seck−1)/(tank)))  y=tan^− (((1−cosk)/(sink)))  y=tan^(−1) (tan(k/2))  y=(k/2)   (dy/dk)=(1/2)  (dy/dx)=(dy/dk)×(dk/dx)=(1/2)×(1/(1+x^2 ))
letfindtheanswerusingtrigothenwithouttrigoy=tan1(1+x21x)x=tankdxdk=sec2k=1+x2y=tan1(seck1tank)y=tan(1cosksink)y=tan1(tank2)y=k2dydk=12dydx=dydk×dkdx=12×11+x2
Answered by MJS last updated on 23/Jun/18
(d/dx)[arctan x]=(1/(x^2 +1))  this is a standard derivate...  we get it this way:  arctan x=f(x)  x=tan(f(x))  (d/dx)[x]=(d/dx)[tan(f(x))]  1=sec^2 (f(x))f′(x)  1=sec^2 (arctan x)f′(x)  f′(x)=(1/(sec^2 (arctan x)))  sec^2  α=(1/(cos^2  α))=((sin^2  α +cos^2  α)/(cos^2  α))=tan^2  α +1  f′(x)=(1/(tan^2 (arctan x)+1))=(1/(x^2 +1))    (d/dx)[arctan (((√(1+x^2 ))−1)/x)]=  =(((d/dx)[(((√(1+x^2 ))−1)/x)])/(((((√(1+x^2 ))−1)/x))^2 +1))=((((√(1+x^2 ))−1)/(x^2 (√(1+x^2 ))))/(2((1+x^2 −(√(1+x^2 )))/x^2 )))=  =(1/(2(1+x^2 )))
ddx[arctanx]=1x2+1thisisastandardderivatewegetitthisway:arctanx=f(x)x=tan(f(x))ddx[x]=ddx[tan(f(x))]1=sec2(f(x))f(x)1=sec2(arctanx)f(x)f(x)=1sec2(arctanx)sec2α=1cos2α=sin2α+cos2αcos2α=tan2α+1f(x)=1tan2(arctanx)+1=1x2+1ddx[arctan1+x21x]==ddx[1+x21x](1+x21x)2+1=1+x21x21+x221+x21+x2x2==12(1+x2)
Answered by ajfour last updated on 23/Jun/18
let x=tan θ  y=tan^(−1) (((1−cos θ)/(sin θ)))    =tan^(−1) (tan (θ/2)) = (θ/2)  y=(1/2)tan^(−1) x  (dy/dx) = (1/(2(1+x^2 ))) .
letx=tanθy=tan1(1cosθsinθ)=tan1(tanθ2)=θ2y=12tan1xdydx=12(1+x2).
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jun/18
tany=(((√(1+x^2 )) −1)/x)  xtany+1=(√(1+x^2  ))  x^2 tan^2 y+2xtany+1=1+x^2   x^2 tan^2 y+2xtany−x^2 =0  x^2 (tan^2 y−1)+2xtany=0  x{x(tan^2 y−1)+2tany}=0  x(tan^2 y−1)+2tany=0  x=((2tany)/(1−tan^2 y))=((2sinycosy)/(cos^2 y−sin^2 y))=tan2y  (dx/dy)=2sec^2 2y^ =2(1+x^2 )  (dy/dx)=(1/(2(1+x^2 )))
tany=1+x21xxtany+1=1+x2x2tan2y+2xtany+1=1+x2x2tan2y+2xtanyx2=0x2(tan2y1)+2xtany=0x{x(tan2y1)+2tany}=0x(tan2y1)+2tany=0x=2tany1tan2y=2sinycosycos2ysin2y=tan2ydxdy=2sec22y=2(1+x2)dydx=12(1+x2)

Leave a Reply

Your email address will not be published. Required fields are marked *