Menu Close

Differentiate-the-following-wrt-x-1-y-x-x-2-y-sin-1-2x-1-Mastermind-




Question Number 169305 by Mastermind last updated on 28/Apr/22
Differentiate the following wrt x  1) y=x^x   2) y=sin^(−1) (2x+1)    Mastermind
Differentiatethefollowingwrtx1)y=xx2)y=sin1(2x+1)Mastermind
Commented by infinityaction last updated on 28/Apr/22
log y  =   xlog x  (1/y)(dy/dx)  = 1+log x  (dy/dx)   =   x^x {1+log ∣x∣}
logy=xlogx1ydydx=1+logxdydx=xx{1+logx}
Commented by Mastermind last updated on 29/Apr/22
what of no. 2?
whatofno.2?
Answered by rexford last updated on 28/Apr/22
(1) lny=xlnx  ((y′)/y)=lnx+1  y′=y[lnx+1]  y′=x^x [lnx+1]
(1)lny=xlnxyy=lnx+1y=y[lnx+1]y=xx[lnx+1]
Answered by rexford last updated on 28/Apr/22
y′=(1/( (√(1−(2x+1)^2 ))))×(d/dx)(2x+1)  y′=(1/( (√(1−(2x+1)^2 ))))×2
y=11(2x+1)2×ddx(2x+1)Missing \left or extra \right
Commented by infinityaction last updated on 29/Apr/22
x = (−1,0)
x=(1,0)
Answered by thfchristopher last updated on 30/Apr/22
1) y=x^x   ⇒ln y=xln x  ⇒(1/y)(dy/dx)=(x/x)+ln x  ⇒(dy/dx)=y(1+ln x)  =x^x (1+ln x)    2) y=sin^(−1) (2x+1)  ⇒sin y=2x+1  ⇒cos y(dy/dx)=2  ⇒(√(1−(2x+1)^2 ))(dy/dx)=2  ⇒(dy/dx)=(2/( (√(1−(2x+1)^2 ))))
1)y=xxlny=xlnx1ydydx=xx+lnxdydx=y(1+lnx)=xx(1+lnx)2)y=sin1(2x+1)siny=2x+1cosydydx=21(2x+1)2dydx=2dydx=21(2x+1)2
Answered by MikeH last updated on 01/May/22
ln y = x ln x  ⇒ (1/y) (dy/dx) = ln x + x((1/x))  ⇒ (dy/dx) = y(ln x +1)  ⇒ (dy/(dx )) = x^x (ln x + 1)
lny=xlnx1ydydx=lnx+x(1x)dydx=y(lnx+1)dydx=xx(lnx+1)

Leave a Reply

Your email address will not be published. Required fields are marked *