Menu Close

Differentiate-the-following-wrt-x-1-y-x-x-2-y-sin-1-2x-1-Mastermind-




Question Number 169305 by Mastermind last updated on 28/Apr/22
Differentiate the following wrt x  1) y=x^x   2) y=sin^(−1) (2x+1)    Mastermind
$${Differentiate}\:{the}\:{following}\:{wrt}\:{x} \\ $$$$\left.\mathrm{1}\right)\:{y}={x}^{{x}} \\ $$$$\left.\mathrm{2}\right)\:{y}={sin}^{−\mathrm{1}} \left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$
Commented by infinityaction last updated on 28/Apr/22
log y  =   xlog x  (1/y)(dy/dx)  = 1+log x  (dy/dx)   =   x^x {1+log ∣x∣}
$$\mathrm{log}\:{y}\:\:=\:\:\:{x}\mathrm{log}\:{x} \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}\:\:=\:\mathrm{1}+\mathrm{log}\:{x} \\ $$$$\frac{{dy}}{{dx}}\:\:\:=\:\:\:{x}^{{x}} \left\{\mathrm{1}+\mathrm{log}\:\mid{x}\mid\right\} \\ $$
Commented by Mastermind last updated on 29/Apr/22
what of no. 2?
$${what}\:{of}\:{no}.\:\mathrm{2}? \\ $$
Answered by rexford last updated on 28/Apr/22
(1) lny=xlnx  ((y′)/y)=lnx+1  y′=y[lnx+1]  y′=x^x [lnx+1]
$$\left(\mathrm{1}\right)\:{lny}={xlnx} \\ $$$$\frac{{y}'}{{y}}={lnx}+\mathrm{1} \\ $$$${y}'={y}\left[{lnx}+\mathrm{1}\right] \\ $$$${y}'={x}^{{x}} \left[{lnx}+\mathrm{1}\right] \\ $$
Answered by rexford last updated on 28/Apr/22
y′=(1/( (√(1−(2x+1)^2 ))))×(d/dx)(2x+1)  y′=(1/( (√(1−(2x+1)^2 ))))×2
$${y}'=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }}×\frac{{d}}{{dx}}\left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$${y}'=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\overset{\mathrm{2}} {\right)}}}×\mathrm{2} \\ $$
Commented by infinityaction last updated on 29/Apr/22
x = (−1,0)
$${x}\:=\:\left(−\mathrm{1},\mathrm{0}\right) \\ $$
Answered by thfchristopher last updated on 30/Apr/22
1) y=x^x   ⇒ln y=xln x  ⇒(1/y)(dy/dx)=(x/x)+ln x  ⇒(dy/dx)=y(1+ln x)  =x^x (1+ln x)    2) y=sin^(−1) (2x+1)  ⇒sin y=2x+1  ⇒cos y(dy/dx)=2  ⇒(√(1−(2x+1)^2 ))(dy/dx)=2  ⇒(dy/dx)=(2/( (√(1−(2x+1)^2 ))))
$$\left.\mathrm{1}\right)\:{y}={x}^{{x}} \\ $$$$\Rightarrow\mathrm{ln}\:{y}={x}\mathrm{ln}\:{x} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}=\frac{{x}}{{x}}+\mathrm{ln}\:{x} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}={y}\left(\mathrm{1}+\mathrm{ln}\:{x}\right) \\ $$$$={x}^{{x}} \left(\mathrm{1}+\mathrm{ln}\:{x}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{y}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$$\Rightarrow\mathrm{sin}\:{y}=\mathrm{2}{x}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:{y}\frac{{dy}}{{dx}}=\mathrm{2} \\ $$$$\Rightarrow\sqrt{\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }\frac{{dy}}{{dx}}=\mathrm{2} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }} \\ $$
Answered by MikeH last updated on 01/May/22
ln y = x ln x  ⇒ (1/y) (dy/dx) = ln x + x((1/x))  ⇒ (dy/dx) = y(ln x +1)  ⇒ (dy/(dx )) = x^x (ln x + 1)
$$\mathrm{ln}\:{y}\:=\:{x}\:\mathrm{ln}\:{x} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{{y}}\:\frac{{dy}}{{dx}}\:=\:\mathrm{ln}\:{x}\:+\:{x}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$$$\Rightarrow\:\frac{{dy}}{{dx}}\:=\:{y}\left(\mathrm{ln}\:{x}\:+\mathrm{1}\right) \\ $$$$\Rightarrow\:\frac{{dy}}{{dx}\:}\:=\:{x}^{{x}} \left(\mathrm{ln}\:{x}\:+\:\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *