Menu Close

Differentiate-with-respect-to-x-arctan-a-2-x-2-a-2-x-2-




Question Number 45464 by peter frank last updated on 13/Oct/18
Differentiate with respect to x  arctan(((a^2 +x^2 )/(a^2 −x^2 )))
Differentiatewithrespecttoxarctan(a2+x2a2x2)
Commented by peter frank last updated on 14/Oct/18
thank sir.really appreciate
thanksir.reallyappreciate
Commented by maxmathsup by imad last updated on 14/Oct/18
you are welcome sir
youarewelcomesir
Commented by maxmathsup by imad last updated on 14/Oct/18
let f(x)=arctan(((a^2  +x^2 )/(a^2 −x^2 ))) =arctan(u(x)) ⇒f^′ (x)=((u^′ (x))/(1+u^2 (x))) but  u^′ (x)=((2x(a^2 −x^2 )−(a^2 +x^2 )(−2x))/((a^2 −x^2 )^2 )) =((2a^2 x−2x^3  +2a^2 x +2x^3 )/((a^2 −x^2 )^2 ))  =((4a^2 x)/((a^2 −x^2 )^2 )) ⇒f^′ (x) =((4a^2 x)/((a^2 −x^2 )^2 )) .(1/(1+(((a^2 +x^2 )^2 )/((a^2 −x^2 )^2 ))))  =((4a^2 x)/((a^2 −x^2 )^2 )) (1/((a^2 −x^2 )^2  +(a^2  +x^2 ))) (a^2 −x^2 )^2  = ((4a^2 x)/(a^4 −2a^2 x^2  +x^4  +a^4  +2a^2 x^(2 ) +x^4 ))  =((4a^2 x)/(2a^4  +2x^4 )) ⇒ ★ f^′ (x) =((2a^2 x)/(x^4  +a^4 )) ★ .
letf(x)=arctan(a2+x2a2x2)=arctan(u(x))f(x)=u(x)1+u2(x)butu(x)=2x(a2x2)(a2+x2)(2x)(a2x2)2=2a2x2x3+2a2x+2x3(a2x2)2=4a2x(a2x2)2f(x)=4a2x(a2x2)2.11+(a2+x2)2(a2x2)2=4a2x(a2x2)21(a2x2)2+(a2+x2)(a2x2)2=4a2xa42a2x2+x4+a4+2a2x2+x4=4a2x2a4+2x4f(x)=2a2xx4+a4.
Answered by ajfour last updated on 13/Oct/18
let   y=tan^(−1) (((a^2 +x^2 )/(a^2 −x^2 )))  (dy/dx)= (1/(1+(((a^2 +x^2 )/(a^2 −x^2 )))^2 ))×((2x(a^2 −x^2 )+2x(a^2 +x^2 ))/((a^2 −x^2 )^2 ))   (dy/dx) = ((2a^2 x)/(a^4 +x^4 ))  .
lety=tan1(a2+x2a2x2)dydx=11+(a2+x2a2x2)2×2x(a2x2)+2x(a2+x2)(a2x2)2dydx=2a2xa4+x4.
Commented by peter frank last updated on 13/Oct/18
thank you sir  so much.but why you differentiate numerator only.
thankyousirsomuch.butwhyyoudifferentiatenumeratoronly.
Commented by ajfour last updated on 13/Oct/18
it isn′t so.
itisntso.
Commented by peter frank last updated on 14/Oct/18
okay sir i understand now.quetient rule method used.
okaysiriunderstandnow.quetientrulemethodused.
Commented by peter frank last updated on 14/Oct/18
sir help Qn 45514
sirhelpQn45514

Leave a Reply

Your email address will not be published. Required fields are marked *