Menu Close

Differentiate-wrt-x-y-sin-1-2x-1-Mastermind-




Question Number 169347 by Mastermind last updated on 29/Apr/22
Differentiate wrt x  y=sin^(−1) (2x+1)    Mastermind
$${Differentiate}\:{wrt}\:{x} \\ $$$${y}={sin}^{−\mathrm{1}} \left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$
Answered by Mathspace last updated on 29/Apr/22
y(x)=arcsin(2x+1) ⇒  (dy/dx)=(2/( (√(1−(2x+1)^2 ))))=(2/( (√(1−(4x^2 +4x+1)))))  =(2/( (√(−4x^2 −4x))))=(2/(2(√(−x^2 −x))))  =(1/( (√(−x^2 −x))))  with  −1<2x+1<1  ⇒−2<2x<0 ⇒−1<x<0
$${y}\left({x}\right)={arcsin}\left(\mathrm{2}{x}+\mathrm{1}\right)\:\Rightarrow \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{1}\right)}} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{−\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}}}=\frac{\mathrm{2}}{\mathrm{2}\sqrt{−{x}^{\mathrm{2}} −{x}}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{−{x}^{\mathrm{2}} −{x}}}\:\:{with}\:\:−\mathrm{1}<\mathrm{2}{x}+\mathrm{1}<\mathrm{1} \\ $$$$\Rightarrow−\mathrm{2}<\mathrm{2}{x}<\mathrm{0}\:\Rightarrow−\mathrm{1}<{x}<\mathrm{0} \\ $$
Answered by alephzero last updated on 29/Apr/22
y = arcsin(g) (let)  ⇒ y = (dy/dg) (dg/dx) = ((d(arcsin(2x+1)))/(d(2x+1))) ∙  ∙ ((d(2x+1))/dx) = (2/( (√(1−(2x+1)^2 ))))
$${y}\:=\:\mathrm{arcsin}\left({g}\right)\:\left({let}\right) \\ $$$$\Rightarrow\:{y}\:=\:\frac{{dy}}{{dg}}\:\frac{{dg}}{{dx}}\:=\:\frac{{d}\left(\mathrm{arcsin}\left(\mathrm{2}{x}+\mathrm{1}\right)\right)}{{d}\left(\mathrm{2}{x}+\mathrm{1}\right)}\:\centerdot \\ $$$$\centerdot\:\frac{{d}\left(\mathrm{2}{x}+\mathrm{1}\right)}{{dx}}\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }} \\ $$
Answered by thfchristopher last updated on 29/Apr/22
⇒sin y=2x+1  ⇒cos y(dy/dx)=2  ⇒(√(1−(2x+1)^2 ))(dy/dx)=2  ⇒(dy/dx)=(2/( (√(1−(2x+1)^2 ))))  As -1<2x+1<1  ⇒-2<2x<0  ⇒-1<x<0
$$\Rightarrow\mathrm{sin}\:{y}=\mathrm{2}{x}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:{y}\frac{{dy}}{{dx}}=\mathrm{2} \\ $$$$\Rightarrow\sqrt{\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }\frac{{dy}}{{dx}}=\mathrm{2} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\underline{\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} }}} \\ $$$$\mathrm{As}\:-\mathrm{1}<\mathrm{2}{x}+\mathrm{1}<\mathrm{1} \\ $$$$\Rightarrow-\mathrm{2}<\mathrm{2}{x}<\mathrm{0} \\ $$$$\Rightarrow-\mathrm{1}<{x}<\mathrm{0} \\ $$
Answered by peter frank last updated on 29/Apr/22
u=2x+1  y=sin^(−1) u  then apply chain rule
$$\mathrm{u}=\mathrm{2x}+\mathrm{1} \\ $$$$\mathrm{y}=\mathrm{sin}^{−\mathrm{1}} \mathrm{u} \\ $$$$\mathrm{then}\:\mathrm{apply}\:\mathrm{chain}\:\mathrm{rule} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *