Menu Close

Differentiate-y-2-x-from-the-first-principle-




Question Number 82018 by TawaTawa last updated on 17/Feb/20
Differentiate     y  =  2^x     from the first principle.
Differentiatey=2xfromthefirstprinciple.
Commented by john santu last updated on 17/Feb/20
ln y = x ln 2  lim_(h→0)  ln(y)  = lim_(h→0) ln(2) (((x+h)−x)/h)  ((y′)/y) = ln(2) lim_(h→0)  (h/h)  y′ = y.ln(2) = 2^( x)  .ln(2)
lny=xln2limh0ln(y)=limh0ln(2)(x+h)xhyy=ln(2)limh0hhy=y.ln(2)=2x.ln(2)
Commented by TawaTawa last updated on 17/Feb/20
God bless you sir
Godblessyousir
Answered by TANMAY PANACEA last updated on 17/Feb/20
y+△y=2^(x+△x)   △y=2^(x+△x) −2^x =2^x (2^(△x) −1)  (dy/dx)=lim_(△x→0)  ((△y)/(△x))=  =lim_(△x→0)  ((2^x (2^(△x) −1))/(△x))  =2^x ×(lim_(△x→0)  ((e^(△x.ln2) −1)/(△x.ln2)))×ln2  =2^x ×1×ln2=2^x ln2
y+y=2x+xy=2x+x2x=2x(2x1)dydx=limx0yx==limx02x(2x1)x=2x×(limx0ex.ln21x.ln2)×ln2=2x×1×ln2=2xln2
Commented by TawaTawa last updated on 17/Feb/20
God bless you sir
Godblessyousir
Answered by mr W last updated on 17/Feb/20
y′=lim_(h→0) ((2^(x+h) −2^x )/h)  =2^x lim_(h→0) ((2^h −1)/h)  =2^x lim_(h→0) ((e^(hln 2) −1)/h)  =2^x lim_(h→0) (([1+hln 2+(((hln 2)^2 )/(2!))+(((hln 2)^3 )/(3!))+...]−1)/h)  =2^x lim_(h→0) [ln 2+((h(ln 2)^2 )/(2!))+((h^2 (ln 2)^3 )/(3!))+...]  =2^x ln 2
y=limh02x+h2xh=2xlimh02h1h=2xlimh0ehln21h=2xlimh0[1+hln2+(hln2)22!+(hln2)33!+]1h=2xlimh0[ln2+h(ln2)22!+h2(ln2)33!+]=2xln2
Commented by TawaTawa last updated on 17/Feb/20
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *