Menu Close

Differentiate-y-sin-xy-




Question Number 161311 by CM last updated on 15/Dec/21
Differentiate y=sin xy
$${Differentiate}\:{y}=\mathrm{sin}\:{xy} \\ $$
Answered by mr W last updated on 15/Dec/21
(dy/dx)=cos (xy)(y+x(dy/dx))  ⇒(dy/dx)=((y cos (xy))/(1−x cos (xy)))
$$\frac{{dy}}{{dx}}=\mathrm{cos}\:\left({xy}\right)\left({y}+{x}\frac{{dy}}{{dx}}\right) \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{{y}\:\mathrm{cos}\:\left({xy}\right)}{\mathrm{1}−{x}\:\mathrm{cos}\:\left({xy}\right)} \\ $$
Commented by CM last updated on 16/Dec/21
Thank you sir
$${Thank}\:{you}\:{sir} \\ $$
Answered by 1549442205PVT last updated on 16/Dec/21
we assume that y is a function of x.Then  y′=cosxy.(y+xy′)⇒y′(1−xcosxy)=ycosxy  ⇒y′=((ycosxy)/(1−xcosxy))
$${we}\:{assume}\:{that}\:{y}\:{is}\:{a}\:{function}\:{of}\:{x}.{Then} \\ $$$${y}'={cosxy}.\left({y}+{xy}'\right)\Rightarrow{y}'\left(\mathrm{1}−{xcosxy}\right)={ycosxy} \\ $$$$\Rightarrow{y}'=\frac{{ycosxy}}{\mathrm{1}−{xcosxy}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *