Question Number 184188 by Mastermind last updated on 03/Jan/23

$$\mathrm{Differentiate},\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{x}−\mathrm{1}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{hi} \\ $$
Answered by SEKRET last updated on 03/Jan/23

$$\:\:\:\:\:\:\boldsymbol{\mathrm{y}}\:=\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}−\mathrm{1}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{y}}\right)\:\:=\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}−\mathrm{1}} \right) \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{y}}\right)\:=\:\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\centerdot\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right) \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{y}}\right)\:=\:\boldsymbol{\mathrm{x}}\centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:−\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right) \\ $$$$\:\:\:\:\:\:\left(\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{y}}\right)\right)\:'\:\:=\:\left(\boldsymbol{\mathrm{x}}\centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:−\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:\right)\:' \\ $$$$\:\:\:\:\:\:\:\:\frac{\boldsymbol{\mathrm{y}}\:'}{\boldsymbol{\mathrm{y}}}\:\:=\:\:\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:+\:\mathrm{1}\:−\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{y}}'\:=\boldsymbol{\mathrm{y}}\centerdot\left(\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:+\:\mathrm{1}\:−\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\:\right)\: \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{y}}\:'\:=\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}−\mathrm{1}} \:\centerdot\left(\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:+\:\mathrm{1}\:−\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right) \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{y}}\:'\:=\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}−\mathrm{2}} \centerdot\left(\boldsymbol{\mathrm{x}}\centerdot\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\:+\:\boldsymbol{\mathrm{x}}\:−\:\mathrm{1}\right) \\ $$
Commented by Mastermind last updated on 03/Jan/23

$$\mathrm{Good}! \\ $$