Menu Close

discuss-the-lim-n-1-1-n-n-




Question Number 117865 by aurpeyz last updated on 14/Oct/20
discuss the lim_(n→∞) (1+(1/n))^n
discussthelimn(1+1n)n
Answered by 1549442205PVT last updated on 14/Oct/20
Lim_(n→∞) (1+(1/n))^n =e≈2.718  e^x =1+(x/(1!))+(x^2 /(2!))+(x^3 /(3!))+...+(x^n /(n!))+...  Hence when x=1 we get  e=1+(1/(1!))+(1/(2!))+....+(1/(n!))+...
Limn(1+1n)n=e2.718ex=1+x1!+x22!+x33!++xnn!+Hencewhenx=1wegete=1+11!+12!+.+1n!+
Answered by mhmoud last updated on 14/Oct/20
1
1
Answered by Lordose last updated on 14/Oct/20
Λ = lim_(x→∞) (1 + (1/n))^n   lnΛ= lim_(x→∞) (nln{1+(1/n)})  set u=(1/n) ⇒ {n→∞, u→0}  lnΛ = lim_(u→0) (((ln(1+u))/u))  L hopital′s  lnΛ = lim_(u→0) ((1/(1+u)))  lnΛ= 1  Λ = e^1  = e
Λ=limx(1+1n)nlnΛ=limx(nln{1+1n})setu=1n{n,u0}lnΛ=limu0(ln(1+u)u)LhopitalslnΛ=limu0(11+u)lnΛ=1Λ=e1=e

Leave a Reply

Your email address will not be published. Required fields are marked *