Question Number 26694 by shiv15031973@gmail.com last updated on 28/Dec/17
$${divide}\:{x}^{\mathrm{6}} −{y}^{\mathrm{6}} \:{by}\:{the}\:{product}\:{of}\:{x}^{\mathrm{2}} +{x}^{} {y}+{y}^{\mathrm{2}\:} \:{and}\:{x}−{y}. \\ $$
Answered by Rasheed.Sindhi last updated on 28/Dec/17
$$\mathrm{Product}\:\mathrm{of}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{y}^{\mathrm{2}} \right)\:\&\:\left(\mathrm{x}−\mathrm{y}\right) \\ $$$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{x}−\mathrm{y}\right)=\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} \\ $$$$−−−−− \\ $$$$\left(\mathrm{x}^{\mathrm{6}} −\mathrm{y}^{\mathrm{6}} \right)\boldsymbol{\div}\left(\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} \right) \\ $$$$\frac{\left(\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{2}} −\left(\mathrm{y}^{\mathrm{3}} \right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} }=\frac{\overset{×} {\left(\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} \right)}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} \right)}{\overset{×} {\left(\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} \right)}} \\ $$$$=\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} \\ $$$$ \\ $$