Menu Close

Does-the-function-f-z-3z-4-2z-3-8z-2-2z-5-z-i-continuous-at-z-i-




Question Number 128574 by mohammad17 last updated on 08/Jan/21
Does the function f(z)=((3z^4 −2z^3 +8z^2 −2z+5)/(z−i))     continuous at z=i ?
$${Does}\:{the}\:{function}\:{f}\left({z}\right)=\frac{\mathrm{3}{z}^{\mathrm{4}} −\mathrm{2}{z}^{\mathrm{3}} +\mathrm{8}{z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{5}}{{z}−{i}}\: \\ $$$$ \\ $$$${continuous}\:{at}\:{z}={i}\:? \\ $$
Answered by MJS_new last updated on 08/Jan/21
f(z)=(((z^2 +1)(3z^2 −2z+5))/(z−i))=  =(((z−i)(z+i)(3z^2 −2z+5))/(z−i))=  =(z+i)(3z^2 −2z+5)  ⇒ f(z) is continuous at z=i
$${f}\left({z}\right)=\frac{\left({z}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{3}{z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{5}\right)}{{z}−\mathrm{i}}= \\ $$$$=\frac{\left({z}−\mathrm{i}\right)\left({z}+\mathrm{i}\right)\left(\mathrm{3}{z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{5}\right)}{{z}−\mathrm{i}}= \\ $$$$=\left({z}+\mathrm{i}\right)\left(\mathrm{3}{z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{5}\right) \\ $$$$\Rightarrow\:{f}\left({z}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{at}\:{z}=\mathrm{i} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *