Menu Close

Donnes-AD-1-DB-6-BCD-45-BAC-90-Determiner-1-AC-2-AE-Solution-BAC-BAC-90-BC-2-AB-2-AC-2-CD-cote-commun-aux-BAC-et-BDC-DB-2-CD-2-BC-2-2BC-CDcos-45-1-




Question Number 179360 by a.lgnaoui last updated on 28/Oct/22
Donnes: AD=1; DB=6; ∡BCD=45° ; ∡BAC=90°  Determiner  1)  AC  ?    2)  AE?  −−−−−−−−−−−−  Solution  △BAC      ∡BAC=90°  BC^2 =AB^2 +AC^2   CD (cote commun aux △BAC et BDC)  DB^2 =CD^2 +BC^2 −2BC×CDcos 45°  (1)  △CAD   CD^2 =AD^2 +AC^2   (1) DB^2 =(AD^2 +AC^2 )+(AB^2 +AC^2 )−2(√((AB^2 +AC^2 )(AD^2 +AC^2 ))) cos 45°    DB^2 =(AD^2 +AB^2 +2AC^2 −(√(2(AB^2 +AC^2 )(AD^2 +AC^2 )))    2(AB^2 +AC^2 )(AD^2 +AC^2 )=(AD^2 +AB^2 +2AC^2 −DB^2 )^2   posons:   AC=x  2(49+x^2 )(1+x^2 )=(1+49+2x^2 −36)^2   (x^4 +50x^2 +49)=2(x^4 +14x^2 +49)     x^4 −22x^2 +49=0   x^2 =11±6(√2)    x=(√(11+6(√2) ))    AC =4,4142135   2)AB et  AC coupent le cercle  en (D,B) et( E,C)   Nous avons  AD×AB=AE×AC    AE=((AD×AB)/(AC))=(7/( (√(11+6(√2)))))=((7(√(11+6(√2))))/(11+6(√2)))   AE=1,585786
Donnes:AD=1;DB=6;BCD=45°;BAC=90°Determiner1)AC?2)AE?SolutionBACBAC=90°BC2=AB2+AC2CD(cotecommunauxBACetBDC)DB2=CD2+BC22BC×CDcos45°(1)CADCD2=AD2+AC2(1)DB2=(AD2+AC2)+(AB2+AC2)2(AB2+AC2)(AD2+AC2)cos45°DB2=(AD2+AB2+2AC22(AB2+AC2)(AD2+AC2)2(AB2+AC2)(AD2+AC2)=(AD2+AB2+2AC2DB2)2posons:AC=x2(49+x2)(1+x2)=(1+49+2x236)2(x4+50x2+49)=2(x4+14x2+49)x422x2+49=0x2=11±62x=11+62AC=4,41421352)ABetACcoupentlecercleen(D,B)et(E,C)NousavonsAD×AB=AE×ACAE=AD×ABAC=711+62=711+6211+62AE=1,585786
Answered by a.lgnaoui last updated on 28/Oct/22

Leave a Reply

Your email address will not be published. Required fields are marked *