Menu Close

ds-dt-v-dv-dt-a-da-dt-b-db-dt-e-de-dt-f-df-dt-g-dg-dt-h-dh-dt-i-di-dt-j-dj-dt-k-now-if-we-continue-this-process-to-infinity-and-if-v-0-v-a-b-e-f-g-h-i-j-1




Question Number 13751 by Nayon last updated on 23/May/17
(ds/dt)=v,(dv/dt)=a,(da/dt)=b,(db/dt)=e,(de/dt)=f  (df/dt)=g,(dg/dt)=h,(dh/dt)=i,(di/dt)=j,(dj/dt)=k,.....  now if we continue this process to  infinity..and if v_0 ,v,a,b,e,f,g,h,i,  j,................=1 .then calculate  the formula of v and s ...
$$\frac{{ds}}{{dt}}={v},\frac{{dv}}{{dt}}={a},\frac{{da}}{{dt}}={b},\frac{{db}}{{dt}}={e},\frac{{de}}{{dt}}={f} \\ $$$$\frac{{df}}{{dt}}={g},\frac{{dg}}{{dt}}={h},\frac{{dh}}{{dt}}={i},\frac{{di}}{{dt}}={j},\frac{{dj}}{{dt}}={k},….. \\ $$$${now}\:{if}\:{we}\:{continue}\:{this}\:{process}\:{to} \\ $$$${infinity}..{and}\:{if}\:{v}_{\mathrm{0}} ,{v},{a},{b},{e},{f},{g},{h},{i}, \\ $$$${j},…………….=\mathrm{1}\:.{then}\:{calculate} \\ $$$${the}\:{formula}\:{of}\:{v}\:{and}\:{s}\:… \\ $$$$ \\ $$
Commented by ajfour last updated on 23/May/17
s=v=e^t
$${s}={v}=\boldsymbol{{e}}^{\boldsymbol{{t}}} \\ $$
Commented by Nayon last updated on 23/May/17
detAils
$${detAils} \\ $$
Commented by Nayon last updated on 23/May/17
v=e^t  right but  s=e^t −1
$${v}={e}^{{t}} \:{right}\:{but} \\ $$$${s}={e}^{{t}} −\mathrm{1} \\ $$$$ \\ $$
Commented by ajfour last updated on 23/May/17
agree
$${agree} \\ $$
Answered by ajfour last updated on 23/May/17
s(t)=s(0)+ts′(0)+(t^2 /(2!))s′′(0)+...  and in question,  s′(0)=s′′(0)=....=1  ,  s(0)=0  so,  s(t)=−1+(1+t+(t^2 /(2!))+....)          s(t)=e^t −1          v(t)=(ds/dt)=e^t   .
$${s}\left({t}\right)={s}\left(\mathrm{0}\right)+{ts}'\left(\mathrm{0}\right)+\frac{{t}^{\mathrm{2}} }{\mathrm{2}!}{s}''\left(\mathrm{0}\right)+… \\ $$$${and}\:{in}\:{question}, \\ $$$${s}'\left(\mathrm{0}\right)={s}''\left(\mathrm{0}\right)=….=\mathrm{1}\:\:,\:\:{s}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${so},\:\:{s}\left({t}\right)=−\mathrm{1}+\left(\mathrm{1}+{t}+\frac{{t}^{\mathrm{2}} }{\mathrm{2}!}+….\right) \\ $$$$\:\:\:\:\:\:\:\:{s}\left({t}\right)={e}^{{t}} −\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:{v}\left({t}\right)=\frac{{ds}}{{dt}}={e}^{{t}} \:\:. \\ $$$$ \\ $$
Commented by Nayon last updated on 24/May/17
Has there any object in the   universe which adhere this formula?
$${Has}\:{there}\:{any}\:{object}\:{in}\:{the}\: \\ $$$${universe}\:{which}\:{adhere}\:{this}\:{formula}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *