Menu Close

dt-5cos-t-6sin-t-




Question Number 175531 by cortano1 last updated on 01/Sep/22
 ∫ (dt/(5cos t+6sin t)) =?
dt5cost+6sint=?
Answered by Ar Brandon last updated on 01/Sep/22
I=∫(dt/(5cost+6sint)) , x=tan(t/2)     =∫(2/(5(((1−x^2 )/(1+x^2 )))+6(((2x)/(1+x^2 )))))∙(dx/(1+x^2 ))     =∫((2dx)/(5+12x−5x^2 ))=∫((2dx)/(((61)/5)−5(x−(6/5))^2 ))     =(2/( (√(61))))argtanh(((5x−6)/( (√(61)))))+C     =(1/( (√(61))))ln∣((5x+(√(61))−6)/(5x−(√(61))−6))∣+C     =(1/( (√(61))))ln∣((5tan((t/2))+(√(61))−6)/(5tan((t/2))−(√(61))−6))∣+C
I=dt5cost+6sint,x=tant2=25(1x21+x2)+6(2x1+x2)dx1+x2=2dx5+12x5x2=2dx6155(x65)2=261argtanh(5x661)+C=161ln5x+6165x616+C=161ln5tan(t2)+6165tan(t2)616+C
Commented by cortano1 last updated on 02/Sep/22
ok
ok
Answered by blackmamba last updated on 01/Sep/22
⇔ 5cos t+6sin t=(√(61)) ((5/( (√(61)))) cos t+(6/( (√(61))))sin t)        = (√(61)) sin (α+t)  I=∫ (dt/( (√(61)) sin (α+t)))  I=(1/( (√(61)))) ln ∣ ((1−cos (α+t))/(sin (α+t)))∣ + c  I=(1/( (√(61)))) ln ∣((1−((6/( (√(61)))) cos t−(5/( (√(61)))) sin t))/((5/( (√(61)))) cos t+(6/( (√(61)))) sin t)) ∣+c  I=(1/( (√(61)))) ln ∣(((√(61))−6cos t+5sin t)/(5cos t+6sin t)) ∣ + c
5cost+6sint=61(561cost+661sint)=61sin(α+t)I=dt61sin(α+t)I=161ln1cos(α+t)sin(α+t)+cI=161ln1(661cost561sint)561cost+661sint+cI=161ln616cost+5sint5cost+6sint+c
Commented by cortano1 last updated on 02/Sep/22
ok
ok

Leave a Reply

Your email address will not be published. Required fields are marked *