Menu Close

du-u-2-1-u-




Question Number 83898 by sahnaz last updated on 07/Mar/20
∫(du/( (√(u^2 −1 ))−u))
duu21u
Commented by john santu last updated on 07/Mar/20
let u = sec θ ⇒ du = sec θ tan θ dθ
letu=secθdu=secθtanθdθ
Commented by john santu last updated on 07/Mar/20
∫ ((sec θ tan θ)/(tan θ − sec θ)) dθ =   ∫ ((sec θ tan θ (tan θ+sec θ))/(−1)) dθ  −[∫sec θ tan^2 θ + tan θ sec^2 θ dθ]  =−∫ sec θ (sec^2 θ−1)dθ−(1/2)tan^2 θ   = −∫sec θ d(tan θ)+ln ∣sec θ+tan θ∣−(1/2)tan^2 θ
secθtanθtanθsecθdθ=secθtanθ(tanθ+secθ)1dθ[secθtan2θ+tanθsec2θdθ]=secθ(sec2θ1)dθ12tan2θ=secθd(tanθ)+lnsecθ+tanθ12tan2θ
Commented by john santu last updated on 07/Mar/20
it easy to solving
iteasytosolving
Commented by mathmax by abdo last updated on 07/Mar/20
I=∫ (du/( (√(u^2 −1))−u))   we use the changement u=ch(t) ⇒  I =∫  ((sh(t)dt)/(sh(t)−ch(t))) =∫ (((e^t −e^(−t) )/2)/(((e^t −e^(−t) )/2)−((e^t  +e^(−t) )/2)))dt  =∫   ((e^t −e^(−t) )/(e^t −e^(−t) −e^t −e^(−t) )) dt =∫  ((e^t  −e^(−t) )/(−2e^(−t) ))dt  =∫((e^(2t) −1)/(−2))dt  =−(1/2)∫  (e^(2t) −1)dt =−(1/4)e^(2t)  +(t/2) +C  t=argch(u) =ln(u+(√(u^2 −1))) ⇒e^(2t)  =(u+(√(u^2 −1)))^2  ⇒  I =−(1/4)(u+(√(u^2 −1)))^2  +(1/2)ln(u+(√(u^2 −1)))+C
I=duu21uweusethechangementu=ch(t)I=sh(t)dtsh(t)ch(t)=etet2etet2et+et2dt=etetetetetetdt=etet2etdt=e2t12dt=12(e2t1)dt=14e2t+t2+Ct=argch(u)=ln(u+u21)e2t=(u+u21)2I=14(u+u21)2+12ln(u+u21)+C

Leave a Reply

Your email address will not be published. Required fields are marked *