Question Number 120254 by bramlexs22 last updated on 30/Oct/20
$$\:\int\:\frac{{dx}}{\mathrm{1}+\mathrm{cos}\theta.\mathrm{cos}\:{x}\:}\:? \\ $$
Answered by TANMAY PANACEA last updated on 30/Oct/20
$$\int\frac{{dx}}{{cos}\theta\left({sec}\theta+{cosx}\right)} \\ $$$$\frac{\mathrm{1}}{{cos}\theta}\int\frac{{dx}}{{sec}\theta+\frac{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}} \\ $$$$\frac{\mathrm{1}}{{cos}\theta}\int\frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{{sec}\theta+{sec}\theta{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}+\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$$$\frac{\mathrm{1}}{{cos}\theta}\int\frac{{d}\left({tan}\frac{{x}}{\mathrm{2}}\right)×\mathrm{2}}{\left(\mathrm{1}+{sec}\theta\right)+\left({sec}\theta−\mathrm{1}\right){tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$$$\frac{\mathrm{2}}{{cos}\theta}\int\frac{{dk}}{\left(\mathrm{1}+{sec}\theta\right)+\left({sec}\theta−\mathrm{1}\right){k}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}}{{cos}\theta\left({sec}\theta−\mathrm{1}\right)}\int\frac{{dk}}{{k}^{\mathrm{2}} +\frac{\mathrm{1}+{sec}\theta}{{sec}\theta−\mathrm{1}}} \\ $$$$\frac{\mathrm{2}}{\mathrm{1}−{cos}\theta}×\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}+{sec}\theta}{{sec}\theta−\mathrm{1}}}}{tan}^{−\mathrm{1}} \left(\frac{{k}}{\:\sqrt{\frac{{sec}\theta+\mathrm{1}}{{sec}\theta−\mathrm{1}}}}\right) \\ $$
Answered by bemath last updated on 30/Oct/20
$${let}\:\mathrm{cos}\:\theta\:=\:{k}\:\Rightarrow\:\int\:\frac{{dx}}{\mathrm{1}+{k}\mathrm{cos}\:{x}} \\ $$$${let}\:\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)\:=\:{u}\:\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right){dx}={du} \\ $$$${dx}\:=\:\mathrm{2cos}\:^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:{du}\:=\:\frac{\mathrm{2}\:{du}}{\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$${I}=\int\:\frac{\mathrm{2}\:{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{1}+\frac{{k}\left(\mathrm{1}−{u}^{\mathrm{2}} \right)}{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$${I}=\int\:\frac{\mathrm{2}\:{du}}{\left(\mathrm{1}+{k}\right)+\left(\mathrm{1}−{k}\right){u}^{\mathrm{2}} }=\:\int\:\frac{\mathrm{2}\:{du}}{\:\left(\sqrt{\mathrm{1}+{k}\:}\right)^{\mathrm{2}} \:+{u}^{\mathrm{2}} \:\left(\sqrt{\mathrm{1}−{k}}\:\right)^{\mathrm{2}} } \\ $$$${letting}\:{u}\sqrt{\mathrm{1}−{k}}\:=\:\sqrt{\mathrm{1}+{k}}\:\mathrm{tan}\:{w} \\ $$$${I}=\:\int\:\frac{\mathrm{2}\:\left(\sqrt{\frac{\mathrm{1}+{k}}{\mathrm{1}−{k}}}\:\right)\:\mathrm{sec}\:^{\mathrm{2}} \left({w}\right)\:{dw}}{\left(\mathrm{1}+{k}\right)\mathrm{sec}\:^{\mathrm{2}} \left({w}\right)} \\ $$$${I}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}\:{w}\:+\:{c}\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{k}^{\mathrm{2}} }}\:\mathrm{arc}\:\mathrm{tan}\:\left({u}\:\sqrt{\frac{\mathrm{1}−{k}}{\mathrm{1}+{k}}}\right)+{c} \\ $$$$=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta}}\:\mathrm{arc}\:\mathrm{tan}\:\left(\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{1}+\mathrm{cos}\:\theta}}\right)\:+\:{c} \\ $$$$=\:\mathrm{2}\:\mathrm{cosec}\:\theta\:\mathrm{arc}\:\mathrm{tan}\:\left(\mathrm{tan}\:\left(\frac{{x}}{\mathrm{2}}\right)\:\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{1}+\mathrm{cos}\:\theta}}\right)\:+\:{c} \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 30/Oct/20
$$\mathrm{I}\:=\int\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{cos}\theta\:\mathrm{cosx}}\:=\int\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{a}\:\mathrm{cosx}}\:\:\left(\mathrm{a}=\mathrm{cos}\theta\:\Rightarrow\mid\mathrm{a}\mid\leqslant\mathrm{1}\right) \\ $$$$=_{\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)=\mathrm{t}} \:\:\:\:\int\:\:\:\frac{\mathrm{2dt}}{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{a}\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)}\:=\int\:\frac{\mathrm{2dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} +\mathrm{a}−\mathrm{at}^{\mathrm{2}} } \\ $$$$=\int\:\frac{\mathrm{2dt}}{\left(\mathrm{1}−\mathrm{a}\right)\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}+\mathrm{a}}\:=\frac{\mathrm{2}}{\mathrm{1}−\mathrm{a}}\int\:\:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} +\frac{\mathrm{1}+\mathrm{a}}{\mathrm{1}−\mathrm{a}}} \\ $$$$=_{\mathrm{t}=\sqrt{\frac{\mathrm{1}+\mathrm{a}}{\mathrm{1}−\mathrm{a}}}\mathrm{z}} \:\:\:\frac{\mathrm{2}}{\mathrm{1}−\mathrm{a}}.\frac{\mathrm{1}−\mathrm{a}}{\mathrm{1}+\mathrm{a}}\int\:\:\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} +\mathrm{1}}\frac{\sqrt{\mathrm{1}+\mathrm{a}}}{\:\sqrt{\mathrm{1}−\mathrm{a}}}\mathrm{dz} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\mathrm{a}^{\mathrm{2}} }}\:\mathrm{arctan}\left(\mathrm{z}\right)\:+\mathrm{c}\:=\frac{\mathrm{2}}{\mid\mathrm{sin}\theta\mid}\:\mathrm{arctan}\left(\sqrt{\frac{\mathrm{1}−\mathrm{cos}\theta}{\mathrm{1}+\mathrm{cos}\theta}}\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)\:+\mathrm{C} \\ $$$$\mathrm{I}=\frac{\mathrm{2}}{\mid\mathrm{sin}\theta\mid}\:\mathrm{arctan}\left(\mid\mathrm{tan}\left(\frac{\theta}{\mathrm{2}}\right)\mid\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)\:+\mathrm{C} \\ $$
Answered by Dwaipayan Shikari last updated on 30/Oct/20
$$\int\frac{{dx}}{\mathrm{1}+\Gamma{cosx}}\:\:\:\:\:\:\:\:\Gamma={cos}\theta \\ $$$$=\mathrm{2}\int\frac{{dt}}{\mathrm{1}+\frac{\Gamma−\Gamma{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}.\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} \left(\mathrm{1}−\Gamma\right)+\left(\Gamma+\mathrm{1}\right)}=\frac{\mathrm{2}}{\mathrm{1}−\Gamma}\int\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\left(\sqrt{\frac{\mathrm{1}+\Gamma}{\mathrm{1}−\Gamma}}\right)^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−\Gamma^{\mathrm{2}} }}{tan}^{−\mathrm{1}} {t}\sqrt{\frac{\mathrm{1}−\Gamma}{\mathrm{1}+\Gamma}}\:+{C} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{cos}^{\mathrm{2}} \theta}}{tan}^{−\mathrm{1}} {tan}\frac{{x}}{\mathrm{2}}.\sqrt{\frac{\mathrm{1}−{cos}\theta}{\mathrm{1}+{cos}\theta}}+{C} \\ $$$$\frac{\mathrm{2}}{\mid{sin}\theta\mid}{tan}^{−\mathrm{1}} \left(\left({tan}\frac{{x}}{\mathrm{2}}\right)\mid\left({tan}\frac{\theta}{\mathrm{2}}\right)\mid\right)+{C} \\ $$