Menu Close

dx-1-sin-2x-




Question Number 85667 by john santu last updated on 23/Mar/20
∫ (dx/( (√(1−sin 2x))))
$$\int\:\frac{{dx}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}}\: \\ $$
Answered by som(math1967) last updated on 24/Mar/20
∫(dx/((cosx−sinx)))  ∫(dx/( (√2)cos(x+(π/4))))  (1/( (√2)))∫sec(x+(π/4))dx  (1/( (√2)))ln∣tan((π/4) +(x/2)+(π/8))∣+C  (1/( (√2)))ln∣tan(((3π)/8) +(x/2))∣ +C
$$\int\frac{{dx}}{\left({cosx}−{sinx}\right)} \\ $$$$\int\frac{{dx}}{\:\sqrt{\mathrm{2}}{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int{sec}\left({x}+\frac{\pi}{\mathrm{4}}\right){dx} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{ln}\mid{tan}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{x}}{\mathrm{2}}+\frac{\pi}{\mathrm{8}}\right)\mid+{C} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{ln}\mid{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\:+\frac{{x}}{\mathrm{2}}\right)\mid\:+{C} \\ $$
Commented by jagoll last updated on 24/Mar/20
sir (√(1−sin 2x ))= ∣cos x−sin x∣  why (√(1−sin 2x))  = cos x−sin x ?
$$\mathrm{sir}\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2x}\:}=\:\mid\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\mid \\ $$$$\mathrm{why}\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2x}}\:\:=\:\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\:? \\ $$
Commented by jagoll last updated on 24/Mar/20
then ∫ sec x dx = ln ∣sec x+tan x∣ sir
$$\mathrm{then}\:\int\:\mathrm{sec}\:\mathrm{x}\:\mathrm{dx}\:=\:\mathrm{ln}\:\mid\mathrm{sec}\:\mathrm{x}+\mathrm{tan}\:\mathrm{x}\mid\:\mathrm{sir} \\ $$
Commented by som(math1967) last updated on 24/Mar/20
secx+tanx=((1+sinx)/(cosx))=((sin(x/2)+cos(x/2))/(cos(x/2)−sin(x/2)))    =((tan(x/2)+1)/(1−tan(x/2)))=tan((x/2) +(π/4))
$${secx}+{tanx}=\frac{\mathrm{1}+{sinx}}{{cosx}}=\frac{{sin}\frac{{x}}{\mathrm{2}}+{cos}\frac{{x}}{\mathrm{2}}}{{cos}\frac{{x}}{\mathrm{2}}−{sin}\frac{{x}}{\mathrm{2}}} \\ $$$$\:\:=\frac{{tan}\frac{{x}}{\mathrm{2}}+\mathrm{1}}{\mathrm{1}−{tan}\frac{{x}}{\mathrm{2}}}={tan}\left(\frac{{x}}{\mathrm{2}}\:+\frac{\pi}{\mathrm{4}}\right) \\ $$
Commented by jagoll last updated on 24/Mar/20
oo same sir. but i don′t agree  with (√(1−sin 2x)) = cos x−sin x sir
$$\mathrm{oo}\:\mathrm{same}\:\mathrm{sir}.\:\mathrm{but}\:\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{agree} \\ $$$$\mathrm{with}\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2x}}\:=\:\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\:\mathrm{sir} \\ $$
Commented by jagoll last updated on 24/Mar/20
i got two solution
$$\mathrm{i}\:\mathrm{got}\:\mathrm{two}\:\mathrm{solution}\: \\ $$
Commented by som(math1967) last updated on 24/Mar/20
yes two solution possible  I use only (cosx−sinx)
$${yes}\:{two}\:{solution}\:{possible} \\ $$$${I}\:{use}\:{only}\:\left({cosx}−{sinx}\right) \\ $$
Commented by jagoll last updated on 24/Mar/20
yes sir. deal
$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{deal} \\ $$
Commented by john santu last updated on 24/Mar/20
yes have 2 solution
$${yes}\:{have}\:\mathrm{2}\:{solution} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *