Menu Close

dx-1-x-1-x-




Question Number 20257 by tammi last updated on 24/Aug/17
∫(dx/((1−x)(√(1+x))))
$$\int\frac{{dx}}{\left(\mathrm{1}−{x}\right)\sqrt{\mathrm{1}+{x}}} \\ $$
Answered by Tinkutara last updated on 24/Aug/17
t^2  = x + 1  dx = 2tdt  ∫((2tdt)/((2 − t^2 )t)) = −2∫(dt/(t^2  − ((√2))^2 ))  = −2((1/(2(√2)))) log ∣((t − (√2))/(t + (√2)))∣ + C  = (1/( (√2))) log ∣((t + (√2))/(t − (√2)))∣ + C  = (1/( (√2))) log ∣(((√(x + 1)) + (√2))/( (√(x + 1)) − (√2)))∣ + C
$${t}^{\mathrm{2}} \:=\:{x}\:+\:\mathrm{1} \\ $$$${dx}\:=\:\mathrm{2}{tdt} \\ $$$$\int\frac{\mathrm{2}{tdt}}{\left(\mathrm{2}\:−\:{t}^{\mathrm{2}} \right){t}}\:=\:−\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} \:−\:\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$=\:−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\right)\:\mathrm{log}\:\mid\frac{{t}\:−\:\sqrt{\mathrm{2}}}{{t}\:+\:\sqrt{\mathrm{2}}}\mid\:+\:{C} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{log}\:\mid\frac{{t}\:+\:\sqrt{\mathrm{2}}}{{t}\:−\:\sqrt{\mathrm{2}}}\mid\:+\:{C} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{log}\:\mid\frac{\sqrt{{x}\:+\:\mathrm{1}}\:+\:\sqrt{\mathrm{2}}}{\:\sqrt{{x}\:+\:\mathrm{1}}\:−\:\sqrt{\mathrm{2}}}\mid\:+\:{C} \\ $$
Commented by tammi last updated on 25/Aug/17
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *