Menu Close

dx-1-x-12-




Question Number 129645 by liberty last updated on 17/Jan/21
    ϝ = ∫ (dx/(1+x^(12) )) .
ϝ=dx1+x12.
Answered by mathmax by abdo last updated on 17/Jan/21
roots of z^(12) +1=0   ⇒z^(12)  =e^(iπ +2ikπ)  =e^(i(2k+1)π)  ⇒z_k =e^(i((2k+1)π)/(12)))   withk∈[[0,11]]  and (1/(z^(12) +1))=(1/(Π_(k=0) ^(11) (z−z_k )))=Σ_(k=0) ^(11)  (a_k /(z−z_k ))  a_k =(1/(12z_k ^(11) )) =(z_k /(−12)) ⇒a_k =−(1/(12))Σ_(k=0) ^(11)  (z_k /(z−z_k )) ⇒  F=−(1/(12))Σ_(k=0) ^(11) z_k  ∫  (dx/(x−z_k )) =−(1/(12))Σ_(k=0) ^(11) z_k ln(x−z_k ) +C
rootsofz12+1=0z12=eiπ+2ikπ=ei(2k+1)πzk=ei2k+1)π12withk[[0,11]]and1z12+1=1k=011(zzk)=k=011akzzkak=112zk11=zk12ak=112k=011zkzzkF=112k=011zkdxxzk=112k=011zkln(xzk)+C

Leave a Reply

Your email address will not be published. Required fields are marked *