Question Number 127355 by bemath last updated on 29/Dec/20
$$\:\int\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=?\: \\ $$
Answered by liberty last updated on 29/Dec/20
$$\:{I}=\int\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:;\:\left[\:{x}\:=\:\mathrm{sin}\:{h}\:\right]\: \\ $$$$\:{I}\:=\int\:\frac{{dh}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} {h}}\:=\:\int\:\frac{{dh}}{\mathrm{sin}\:^{\mathrm{2}} {h}\left(\mathrm{1}+\mathrm{csc}^{\mathrm{2}} \:{h}\right)} \\ $$$$\:{I}=\:\int\:\frac{\mathrm{csc}^{\mathrm{2}} \:{h}\:}{\mathrm{cot}\:^{\mathrm{2}} {h}\:+\mathrm{2}}\:{dh}\:=\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{cot}\:{h}}{\:\sqrt{\mathrm{2}}}\right)+{c} \\ $$$$\:{I}=\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}\sqrt{\mathrm{2}}}\right)\:+\:{c}\: \\ $$