dx-1-x-2-1-x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 128775 by bramlexs22 last updated on 10/Jan/21 ∫dx(1−x)21−x2? Answered by liberty last updated on 10/Jan/21 letφ=1+x1−x⇒x=φ2−1φ2+1anddx=4φ(φ2+1)2dφY=∫(φ2+1)38φ×4φ(φ2+1)2dφY=12∫(φ2+1)dφ=12(13φ3+φ)+CY=16(x+11−x+3)x+11−x+CY=2−x3−3xx+11−x+C Answered by mr W last updated on 10/Jan/21 x=cosθ∫−sinθdθ(1−cosθ)2sinθ=−∫dθ(1−cosθ)2=−∫dθ4sin4θ2=−∫dθ22sin4θ2=3tan2θ2+16tan3θ2+C=3tan2(cos−1x2)+16tan3(cos−1x2)+C Answered by mathmax by abdo last updated on 10/Jan/21 ∫dx(1−x)21−x2changementx=sintgiveI=∫cosx(1−sint)2cosxdx=tan(t2)=u∫2du(1+u2)(1−2u1+u2)2=∫2du(u2+1)(u2+1−2uu2+1)2=2∫u2+1(u2−2u+1)2du=2∫u2−2u+1+2u(u2−2u+1)2du=2∫du(u2−2u+1)+2∫2u−2+2(u2−2u+1)2du=2∫du(u−1)2+2∫2u−2(u2−2u+1)2du+4∫du(u−1)4=−2u−1−2u2−2u+1+4×1−4+1(u−1)−4+1+C=21−u−2(1−u)2+43(1−u)3+C=21−tan(t2)−2(1−tan(t2))2+43(1−tan(t2))+C=103(1−tan(arcsinx2))−2(1−tan(arcsinx2))2+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-B-x-y-0-1-1-t-x-1-t-y-1-dt-1-study-the-convergence-of-B-x-y-1-prove-that-B-x-y-B-y-x-prove-that-B-x-y-0-t-x-1-1-t-x-y-dt-2-prove-that-B-x-y-x-y-Next Next post: Find-the-value-of-x-from-the-equation-1-sin-x-sin-2-x-sin-3-x-sin-4-x-4-2-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.