Menu Close

dx-1-x-2-1-x-2-




Question Number 128775 by bramlexs22 last updated on 10/Jan/21
∫ (dx/((1−x)^2  (√(1−x^2 )))) ?
dx(1x)21x2?
Answered by liberty last updated on 10/Jan/21
 let ϕ = (√((1+x)/(1−x))) ⇒x = ((ϕ^2 −1)/(ϕ^2 +1)) and dx = ((4ϕ)/((ϕ^2 +1)^2 )) dϕ  Y = ∫ (((ϕ^2 +1)^3 )/(8ϕ)) × ((4ϕ)/((ϕ^2 +1)^2 )) dϕ  Y=(1/2)∫ (ϕ^2 +1)dϕ = (1/2)((1/3)ϕ^3  +ϕ)+C  Y= (1/6)(((x+1)/(1−x)) +3 ) (√((x+1)/(1−x))) + C  Y= ((2−x)/(3−3x)) (√((x+1)/(1−x))) + C
letφ=1+x1xx=φ21φ2+1anddx=4φ(φ2+1)2dφY=(φ2+1)38φ×4φ(φ2+1)2dφY=12(φ2+1)dφ=12(13φ3+φ)+CY=16(x+11x+3)x+11x+CY=2x33xx+11x+C
Answered by mr W last updated on 10/Jan/21
x=cos θ  ∫((−sin θ dθ)/((1−cos θ)^2 sin θ))  =−∫(dθ/((1−cos θ)^2 ))  =−∫(dθ/(4 sin^4  (θ/2)))  =−∫(d(θ/2)/(2 sin^4  (θ/2)))  =((3 tan^2  (θ/2)+1)/(6 tan^3  (θ/2)))+C  =((3 tan^2  (((cos^(−1) x)/2))+1)/(6 tan^3  (((cos^(−1) x)/2))))+C
x=cosθsinθdθ(1cosθ)2sinθ=dθ(1cosθ)2=dθ4sin4θ2=dθ22sin4θ2=3tan2θ2+16tan3θ2+C=3tan2(cos1x2)+16tan3(cos1x2)+C
Answered by mathmax by abdo last updated on 10/Jan/21
∫  (dx/((1−x)^2 (√(1−x^2 ))))  changement x=sint give  I =∫   ((cosx)/((1−sint)^2 cosx))dx =_(tan((t/2))=u) ∫  ((2du)/((1+u^2 )(1−((2u)/(1+u^2 )))^2 ))  =∫  ((2du)/((u^2 +1)(((u^2 +1−2u)/(u^2 +1)))^2 )) =2∫  ((u^2 +1)/((u^2 −2u+1)^2 ))du  =2 ∫  ((u^2 −2u+1 +2u)/((u^2 −2u+1)^2 ))du =2 ∫ (du/((u^2 −2u+1))) +2 ∫ ((2u−2 +2)/((u^2 −2u+1)^2 ))du  =2∫ (du/((u−1)^2 )) +2 ∫ ((2u−2)/((u^2 −2u+1)^2 ))du+4∫  (du/((u−1)^4 ))  =−(2/(u−1))−(2/(u^2 −2u+1)) +4 ×(1/(−4+1))(u−1)^(−4+1)  +C  =(2/(1−u))−(2/((1−u)^2 ))+(4/(3(1−u)^3 )) +C  =(2/(1−tan((t/2))))−(2/((1−tan((t/2)))^2 )) +(4/(3(1−tan((t/2))))) +C  =((10)/(3(1−tan(((arcsinx)/2)))))−(2/((1−tan(((arcsinx)/2)))^2 ))+C
dx(1x)21x2changementx=sintgiveI=cosx(1sint)2cosxdx=tan(t2)=u2du(1+u2)(12u1+u2)2=2du(u2+1)(u2+12uu2+1)2=2u2+1(u22u+1)2du=2u22u+1+2u(u22u+1)2du=2du(u22u+1)+22u2+2(u22u+1)2du=2du(u1)2+22u2(u22u+1)2du+4du(u1)4=2u12u22u+1+4×14+1(u1)4+1+C=21u2(1u)2+43(1u)3+C=21tan(t2)2(1tan(t2))2+43(1tan(t2))+C=103(1tan(arcsinx2))2(1tan(arcsinx2))2+C

Leave a Reply

Your email address will not be published. Required fields are marked *