Menu Close

dx-1-x-3-




Question Number 129855 by liberty last updated on 20/Jan/21
 ϑ = ∫ (dx/((1+(√x) )^3 ))
ϑ=dx(1+x)3
Answered by EDWIN88 last updated on 20/Jan/21
ϑ = ∫ (dx/(((√x))^3 (1+x^(−1/2) )^3 ))= ∫ (x^(−3/2) /((1+x^(−1/2) )^3 )) dx   let ϕ = 1+x^(−1/2)  →dϕ=−(1/2)x^(−3/2)  dx  ϑ = −2∫ (dϕ/ϕ^3 ) = −2∫ ϕ^(−3)  dϕ  ϕ=(1/ϕ^2 )+C = (1/(((((√x) +1)/( (√x))))^2 )) + C  ϕ=(x/(((√x) +1)^2 )) + C
ϑ=dx(x)3(1+x1/2)3=x3/2(1+x1/2)3dxletφ=1+x1/2dφ=12x3/2dxϑ=2dφφ3=2φ3dφφ=1φ2+C=1(x+1x)2+Cφ=x(x+1)2+C
Answered by stelor last updated on 20/Jan/21
 let u =(√x)     so,  du=(1/(2(√x)))dx = du = (1/(2u))dx  v = ∫((2udu)/((1+u)^3 ))  where u = (√x)  let t = 1+u  so, du=dt  v =2∫(((t−1))/t^3 )dt where t = u−1= (√x)−1  v=2[∫((1/t^2 )−(1/t^3 ))dt] =2(−(1/t)+(1/(2t^2 )) + c )  v = 2(−(1/( (√x)−1))+(1/(2((√x)−1)^2 )) + c)  v= ((3−2(√x))/(((√x)−1)^2 )) + c
letu=xso,du=12xdx=du=12udxv=2udu(1+u)3whereu=xlett=1+uso,du=dtv=2(t1)t3dtwheret=u1=x1v=2[(1t21t3)dt]=2(1t+12t2+c)v=2(1x1+12(x1)2+c)v=32x(x1)2+c
Commented by bemath last updated on 20/Jan/21
t = 1+u but t=u−1 ; ambiguous
t=1+ubutt=u1;ambiguous

Leave a Reply

Your email address will not be published. Required fields are marked *