Menu Close

dx-1-x-4-




Question Number 171371 by pticantor last updated on 13/Jun/22
∫_(−∞) ^(+∞) (dx/(1+x^4 ))=?
+dx1+x4=?
Answered by aleks041103 last updated on 13/Jun/22
solve using complex analysis  we inregrate the complex function  (1/(1+z^4 )) over the contour Γ=lim_(r→∞) Γ_1 ∪Γ_2 .  Γ_1 :=[−r,r] and Γ_2 :={re^(it) ∣t∈(0,π)}  ⇒I=∮_Γ (dz/(1+z^4 ))=∫_Γ_1  (dz/(1+z^4 ))+∫_Γ_2  (dz/(1+z^4 ))  ∫_Γ_1  (dz/(1+z^4 ))=∫_(−∞) ^(+∞) (dx/(1+x^4 ))  ∫_Γ_2  (dz/(1+z^4 ))=lim_(r→∞) ∫_0 ^π ((ire^(it) dt)/(1+r^4 e^(4it) ))=  =lim_(r→∞) ((ir)/r^4 )∫_0 ^π e^(−3it) dt=0  ⇒Ans.=∮_Γ (dz/(1+z^4 ))=2πiΣRes(z_i )  1+z^4 =0  z^4 =e^(iπ) =e^(i(π+2kπ)) ⇒z=e^(i((π/4)+((kπ)/2)))   therefore we have  z_1 =e^(iπ/4) =(1/( (√2)))+(i/( (√2))),Im(z_1 )>0  z_2 =e^(3iπ/4) =−(1/( (√2)))+(i/( (√2))),Im(z_2 )>0  z_3 =e^(5iπ/4) =−(1/( (√2)))−(i/( (√2))),Im(z_3 )<0  z_4 =e^(7iπ/4) =(1/( (√2)))−(i/( (√2))),Im(z_4 )<0  1+z^4 =(z−z_1 )(z−z_2 )(z−z_3 )(z−z_4 )  ⇒we have poles of (1/(1+z^4 )) in bounds  of Γ at z_1  and z_2  and those poles are  simple.  ⇒Res(z_1 )=lim_(z→z_1 ) ((z−z_1 )/(1+z^4 ))=(1/(4z_1 ^3 ))=(1/4) (z_1 /z_1 ^4 )=−(1/4)e^(iπ/4)   Res(z_2 )=lim_(z→z_2 ) ((z−z_2 )/(1+z^4 ))=(1/(4z_2 ^3 ))=(1/4) (z_2 /z_2 ^4 )=−(1/4)ie^(iπ/2)   ΣRes(z_i )=−(1/4)(1+i)e^(iπ/4) =  =−((√2)/4)((1/( (√2)))+(i/( (√2))))e^(iπ/4) =  =−((√2)/4)e^(iπ/2) =−(i/(2(√2)))  ⇒∫_(−∞) ^(+∞) (dx/(1+x^4 ))=2πi(−(i/(2(√2))))=(π/( (√2)))
solveusingcomplexanalysisweinregratethecomplexfunction11+z4overthecontourΓ=limrΓ1Γ2.Γ1:=[r,r]andΓ2:={reitt(0,π)}I=Γdz1+z4=Γ1dz1+z4+Γ2dz1+z4Γ1dz1+z4=+dx1+x4Γ2dz1+z4=limr0πireitdt1+r4e4it==limrirr40πe3itdt=0Ans.=Γdz1+z4=2πiΣRes(zi)1+z4=0z4=eiπ=ei(π+2kπ)z=ei(π4+kπ2)thereforewehavez1=eiπ/4=12+i2,Im(z1)>0z2=e3iπ/4=12+i2,Im(z2)>0z3=e5iπ/4=12i2,Im(z3)<0z4=e7iπ/4=12i2,Im(z4)<01+z4=(zz1)(zz2)(zz3)(zz4)wehavepolesof11+z4inboundsofΓatz1andz2andthosepolesaresimple.Res(z1)=limzz1zz11+z4=14z13=14z1z14=14eiπ/4Res(z2)=limzz2zz21+z4=14z23=14z2z24=14ieiπ/2ΣRes(zi)=14(1+i)eiπ/4==24(12+i2)eiπ/4==24eiπ/2=i22+dx1+x4=2πi(i22)=π2
Answered by Mathspace last updated on 14/Jun/22
∫_(−∞) ^(+∞) (dx/(x^4 +1))=∫_(−∞) ^(+∞) (dx/((x^2 −i)(x^2 +i)))  =(1/(2i))∫_(−∞) ^(+∞) ((1/(x^2 −i))−(1/(x^2 +i)))dx  =(1/(2i)){∫_(−∞) ^(+∞) (dx/(x^2 −i))−conj(∫_(−∞) ^(+∞) (dx/(x^2 −i)))}  =im(∫_(−∞) ^(+∞) (dx/(x^2 −i))) let f(z)=(1/(z^2 −i))  ⇒f(z)=(1/((z−e^((iπ)/4) )(z+e^((iπ)/4) )))  ∫_(−∞) ^(+∞) f(z)dz=2iπRe(f,e^((iπ)/4) )  =2iπ×(1/(2e^((iπ)/4) ))=iπe^(−((iπ)/4))   =iπ{(1/( (√2)))−(1/( (√2)))i}=((iπ)/( (√2)))+(π/( (√2))) ⇒  ∫_(−∞) ^(+∞) (dx/(1+x^4 ))=(π/( (√2)))
+dxx4+1=+dx(x2i)(x2+i)=12i+(1x2i1x2+i)dx=12i{+dxx2iconj(+dxx2i)}=im(+dxx2i)letf(z)=1z2if(z)=1(zeiπ4)(z+eiπ4)+f(z)dz=2iπRe(f,eiπ4)=2iπ×12eiπ4=iπeiπ4=iπ{1212i}=iπ2+π2+dx1+x4=π2
Answered by floor(10²Eta[1]) last updated on 14/Jun/22
∫_(−∞) ^∞ (dx/((x^2 +1)^2 −2x^2 ))=∫_(−∞) ^∞ (dx/((x^2 +(√2)x+1)(x^2 −(√2)x+1)))  ((1+i)/4)∫_(−∞) ^∞ (dx/(x^2 +(√2)x+1))+((1−i)/4)∫_(−∞) ^∞ (dx/(x^2 −(√2)x+1))  ((1+i)/4)∫_(−∞) ^∞ (dx/((x+((√2)/2))^2 +(1/2)))+((1−i)/4)∫_(−∞) ^∞ (dx/((x−((√2)/2))^2 +(1/2)))  ((1+i)/4)((√2)arctg(x(√2)+1))_(−∞) ^∞ +((1−i)/4)((√2)arctg(x(√2)−1))_(−∞) ^∞   ((1+i)/4)(√2)((π/2)−(−(π/2)))+((1−i)/4)(√2)((π/2)−(−(π/2)))  =((π(√2)+iπ(√2))/4)+((π(√2)−iπ(√2))/4)=((π(√2))/2)=(π/( (√2)))
dx(x2+1)22x2=dx(x2+2x+1)(x22x+1)1+i4dxx2+2x+1+1i4dxx22x+11+i4dx(x+22)2+12+1i4dx(x22)2+121+i4(2arctg(x2+1))+1i4(2arctg(x21))1+i42(π2(π2))+1i42(π2(π2))=π2+iπ24+π2iπ24=π22=π2

Leave a Reply

Your email address will not be published. Required fields are marked *