dx-1-x-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 171371 by pticantor last updated on 13/Jun/22 ∫−∞+∞dx1+x4=? Answered by aleks041103 last updated on 13/Jun/22 solveusingcomplexanalysisweinregratethecomplexfunction11+z4overthecontourΓ=limr→∞Γ1∪Γ2.Γ1:=[−r,r]andΓ2:={reit∣t∈(0,π)}⇒I=∮Γdz1+z4=∫Γ1dz1+z4+∫Γ2dz1+z4∫Γ1dz1+z4=∫−∞+∞dx1+x4∫Γ2dz1+z4=limr→∞∫0πireitdt1+r4e4it==limr→∞irr4∫0πe−3itdt=0⇒Ans.=∮Γdz1+z4=2πiΣRes(zi)1+z4=0z4=eiπ=ei(π+2kπ)⇒z=ei(π4+kπ2)thereforewehavez1=eiπ/4=12+i2,Im(z1)>0z2=e3iπ/4=−12+i2,Im(z2)>0z3=e5iπ/4=−12−i2,Im(z3)<0z4=e7iπ/4=12−i2,Im(z4)<01+z4=(z−z1)(z−z2)(z−z3)(z−z4)⇒wehavepolesof11+z4inboundsofΓatz1andz2andthosepolesaresimple.⇒Res(z1)=limz→z1z−z11+z4=14z13=14z1z14=−14eiπ/4Res(z2)=limz→z2z−z21+z4=14z23=14z2z24=−14ieiπ/2ΣRes(zi)=−14(1+i)eiπ/4==−24(12+i2)eiπ/4==−24eiπ/2=−i22⇒∫−∞+∞dx1+x4=2πi(−i22)=π2 Answered by Mathspace last updated on 14/Jun/22 ∫−∞+∞dxx4+1=∫−∞+∞dx(x2−i)(x2+i)=12i∫−∞+∞(1x2−i−1x2+i)dx=12i{∫−∞+∞dxx2−i−conj(∫−∞+∞dxx2−i)}=im(∫−∞+∞dxx2−i)letf(z)=1z2−i⇒f(z)=1(z−eiπ4)(z+eiπ4)∫−∞+∞f(z)dz=2iπRe(f,eiπ4)=2iπ×12eiπ4=iπe−iπ4=iπ{12−12i}=iπ2+π2⇒∫−∞+∞dx1+x4=π2 Answered by floor(10²Eta[1]) last updated on 14/Jun/22 ∫−∞∞dx(x2+1)2−2x2=∫−∞∞dx(x2+2x+1)(x2−2x+1)1+i4∫−∞∞dxx2+2x+1+1−i4∫−∞∞dxx2−2x+11+i4∫−∞∞dx(x+22)2+12+1−i4∫−∞∞dx(x−22)2+121+i4(2arctg(x2+1))−∞∞+1−i4(2arctg(x2−1))−∞∞1+i42(π2−(−π2))+1−i42(π2−(−π2))=π2+iπ24+π2−iπ24=π22=π2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-40297Next Next post: 10-men-had-the-work-of-cultivating-a-farm-for-18-days-when-1-3-of-work-was-done-6-men-were-reduced-for-how-long-was-the-work-of-cultivating-the-farm-done- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.