Menu Close

dx-2-cos-x-




Question Number 90544 by jagoll last updated on 24/Apr/20
∫ (dx/( (√(2−cos x))))
$$\int\:\frac{{dx}}{\:\sqrt{\mathrm{2}−\mathrm{cos}\:{x}}} \\ $$
Answered by $@ty@m123 last updated on 24/Apr/20
∫(dx/( (√(2−((1−tan^2 (x/2))/(1+tan^2 (x/2)))))))  ∫(dx/( (√((2+2tan^2 (x/2)+1−tan^2 (x/2))/(1+tan^2 (x/2))))))  ∫(dx/( (√((3+tan^2 (x/2))/(sec^2 (x/2))))))  ∫((sec^2 (x/2)dx)/( (√(3+tan^2 (x/2)))))  Let t=tan (x/2)  dt=(1/2)sec^2 (x/2)dx  I=∫((2dt)/( (√(3+t^2 ))))  =2ln (t+(√(3+t^2 )))+C
$$\int\frac{{dx}}{\:\sqrt{\mathrm{2}−\frac{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}}} \\ $$$$\int\frac{{dx}}{\:\sqrt{\frac{\mathrm{2}+\mathrm{2tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}+\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}}} \\ $$$$\int\frac{{dx}}{\:\sqrt{\frac{\mathrm{3}+\mathrm{tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{sec}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}}} \\ $$$$\int\frac{\mathrm{sec}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx}}{\:\sqrt{\mathrm{3}+\mathrm{tan}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}} \\ $$$${Let}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}} \\ $$$${dt}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}\:^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx} \\ $$$${I}=\int\frac{\mathrm{2}{dt}}{\:\sqrt{\mathrm{3}+{t}^{\mathrm{2}} }} \\ $$$$=\mathrm{2ln}\:\left({t}+\sqrt{\mathrm{3}+{t}^{\mathrm{2}} }\right)+\mathrm{C} \\ $$
Commented by jagoll last updated on 25/Apr/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *