Menu Close

dx-2-x-x-




Question Number 20244 by tammi last updated on 24/Aug/17
∫(dx/((2−x)(√x)))
$$\int\frac{{dx}}{\left(\mathrm{2}−{x}\right)\sqrt{{x}}} \\ $$
Answered by ajfour last updated on 24/Aug/17
let (√x)=t    ⇒   dx=2tdt  ∫(dx/((2−x)(√x)))=∫((2tdt)/((2−t^2 )t))  =−2∫(dt/(t^2 −2))=((−2)/(2(√2)))ln ∣((t−(√2))/(t+(√2)))∣+C  =(1/( (√2)))ln ∣(((√x)+(√2))/( (√x)−(√2)))∣+C .
$${let}\:\sqrt{{x}}={t}\:\:\:\:\Rightarrow\:\:\:{dx}=\mathrm{2}{tdt} \\ $$$$\int\frac{{dx}}{\left(\mathrm{2}−{x}\right)\sqrt{{x}}}=\int\frac{\mathrm{2}{tdt}}{\left(\mathrm{2}−{t}^{\mathrm{2}} \right){t}} \\ $$$$=−\mathrm{2}\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{2}}=\frac{−\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid\frac{{t}−\sqrt{\mathrm{2}}}{{t}+\sqrt{\mathrm{2}}}\mid+{C} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid\frac{\sqrt{{x}}+\sqrt{\mathrm{2}}}{\:\sqrt{{x}}−\sqrt{\mathrm{2}}}\mid+{C}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *