Menu Close

dx-3sin-x-4cos-x-




Question Number 41561 by Tawa1 last updated on 09/Aug/18
∫ (dx/(3sin(x) + 4cos(x)))
dx3sin(x)+4cos(x)
Commented by math khazana by abdo last updated on 09/Aug/18
changement tan((x/2))=t give  I  = ∫      (1/(3((2t)/(1+t^2 )) +4((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = 2 ∫      (dt/(6t +4−4t^2 )) = ∫    (dt/(−2t^2  +3t +2))  =−∫    (dt/(2t^2 −3t−2)) let decompose  F(t)= (1/(2t^2 −3t −2))  Δ =9+16 =25 ⇒t_1 =((3+5)/4) =2 and t_2 =((3−5)/4) =−(1/2)  F(t) =(1/(2(t−2)(t+(1/2)))) =(a/(t−2)) +(b/(t+(1/2)))  a = (1/(2(2+(1/2)))) = (1/5)  b = (1/(2((1/2)−2))) =− (1/3) ⇒F(t)=(1/(5(t−2))) −(1/(3(t+(1/2))))  I =−∫ F(t)dt = ∫   (1/(3(t+(1/2))))dt −(1/5) ∫  (dt/(t−2)) +c  =(1/3)ln∣t+(1/2)∣ −(1/5)ln∣t−2∣ +c  =(1/3)ln∣tan((x/2))+(1/2)∣−(1/5)ln∣tan((x/2))−2∣ +c .
changementtan(x2)=tgiveI=132t1+t2+41t21+t22dt1+t2=2dt6t+44t2=dt2t2+3t+2=dt2t23t2letdecomposeF(t)=12t23t2Δ=9+16=25t1=3+54=2andt2=354=12F(t)=12(t2)(t+12)=at2+bt+12a=12(2+12)=15b=12(122)=13F(t)=15(t2)13(t+12)I=F(t)dt=13(t+12)dt15dtt2+c=13lnt+1215lnt2+c=13lntan(x2)+1215lntan(x2)2+c.
Commented by Tawa1 last updated on 10/Aug/18
God bless you sir
Godblessyousir
Commented by math khazana by abdo last updated on 10/Aug/18
thank you sir
thankyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Aug/18
t=tan(x/2)  dt=sec^2 (x/2)×(1/2)dx  dx=((2dt)/(1+t^2 ))  ∫((2dt)/(1+t^2 ))×(1/(3.((2t)/(1+t^2 ))+4.((1−t^2 )/(1+t^2 ))))  2∫(dt/(6t+4−4t^2 ))  =2∫(dt/(−4(t^2 −(3/2)t−1)))  =((−1)/2)∫(dt/(t^2 −2.t.(3/4)+(9/(16))−(9/(16))−1))  =((−1)/2)∫(dt/((t−(3/4))^2 −((5/4))^2 ))  now use formjla ∫(dx/(x^2 −a^2 ))  =((−1)/2)∫(dt/((t−(3/4)+(5/4))(t−(3/4)−(5/4))))  =((−1)/2)∫(dt/((t+(1/2))(t−2)))  =((−1)/2)×(2/5)∫(((t+(1/2))−(t−2))/((t+(1/2))(t−2)))dt  =((−1)/5){∫(dt/(t−2))−∫(dt/(t+(1/2)))}  =((−1)/5){ln(((t−2)/(t+(1/2))))}+c  =((−1)/5){ln(((2t−4)/(2t+1)))}+c  =((−1)/5){ln(((2tan(x/2)−4)/(2tan(x/2)+1)))}+c
t=tanx2dt=sec2x2×12dxdx=2dt1+t22dt1+t2×13.2t1+t2+4.1t21+t22dt6t+44t2=2dt4(t232t1)=12dtt22.t.34+9169161=12dt(t34)2(54)2nowuseformjladxx2a2=12dt(t34+54)(t3454)=12dt(t+12)(t2)=12×25(t+12)(t2)(t+12)(t2)dt=15{dtt2dtt+12}=15{ln(t2t+12)}+c=15{ln(2t42t+1)}+c=15{ln(2tanx242tanx2+1)}+c
Commented by Tawa1 last updated on 09/Aug/18
God bless you sir
Godblessyousir
Commented by Tawa1 last updated on 09/Aug/18
Umm. i would love it if you can finish it sir. God bless you sir.  I am just learning
Umm.iwouldloveitifyoucanfinishitsir.Godblessyousir.Iamjustlearning
Commented by Tawa1 last updated on 09/Aug/18
I appreciate your effort sir. God bless you
Iappreciateyoureffortsir.Godblessyou
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Aug/18
actually i do not remember formula...but know  how the formula is derived...now i am 48years  but still iknow how the formula i use  are derived
actuallyidonotrememberformulabutknowhowtheformulaisderivednowiam48yearsbutstilliknowhowtheformulaiusearederived
Commented by Tawa1 last updated on 09/Aug/18
Noted sir
Notedsir
Commented by MJS last updated on 09/Aug/18
this is called Weierstrass−Method  we have  t=tan (x/2) ⇒ dt=dx×(tan (x/2))′=(dx/(2cos^2  (x/2))) ⇒  ⇒ x=2arctan t; dx=2dtcos^2  (x/2) ⇒  ⇒ sin x =((2t)/(1+t^2 )); cos x =((1−t^2 )/(1+t^2 )); dx=((2dt)/(1+t^2 ))
thisiscalledWeierstrassMethodwehavet=tanx2dt=dx×(tanx2)=dx2cos2x2x=2arctant;dx=2dtcos2x2sinx=2t1+t2;cosx=1t21+t2;dx=2dt1+t2
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Aug/18
another method  let 3=rcos∝     4=rsin∝  ∫(dx/(rcos∝sinx+rsin∝cosx))  ∫(dx/(r{sin(x+∝)}))  =(1/r)∫cosec(x+∝)dx  now use formula and put value of r snd ∝  3^2 +4^2 =r^2 (cos^2 ∝+sin^2 ∝)  r^2 =25  so r=5  tan∝=(4/3)     ∝=tan^(−1) ((4/3))  so ans is   =(1/5)ln{tan(((x+α)/2))}+c  =(1/5)ln{tan(((x+tan^(−1) ((4/3)))/2))}+c
anothermethodlet3=rcos4=rsindxrcossinx+rsincosxdxr{sin(x+)}=1rcosec(x+)dxnowuseformulaandputvalueofrsnd32+42=r2(cos2+sin2)r2=25sor=5tan∝=43∝=tan1(43)soansis=15ln{tan(x+α2)}+c=15ln{tan(x+tan1(43)2)}+c
Commented by Tawa1 last updated on 09/Aug/18
I really appreciate sir. God bless you.
Ireallyappreciatesir.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *