Menu Close

dx-3sin-x-sin-3-x-




Question Number 113275 by bemath last updated on 12/Sep/20
 ∫ (dx/(3sin x+sin^3 x)) ?
dx3sinx+sin3x?
Answered by bemath last updated on 12/Sep/20
I = ∫ (dx/(sin x(3+sin^2 x)))  I=∫ ((sin x dx)/(sin^2 x(3+sin^2 x)))  I= ∫ ((−d(cos x))/((1−cos^2 x)(4−cos^2 x)))  I = ∫((−du)/((1−u^2 )(4−u^2 ))) ; where u =cos x  I=−∫ (du/((1+u)(1−u)(2+u)(2−u)))  I=(1/6)∫ ((1/(u−1)))−((1/(u+1)))du−(1/(12))∫ ((1/(u−2))−(1/(u+2)))du  I=(1/6)ln ∣((u−1)/(u+1))∣−(1/(12))ln ∣((u−2)/(u+2))∣ + c  I= (1/6)ln ∣((cos x−1)/(cos x+1))∣−(1/(12))ln ∣((cos x−2)/(cos x+2))∣ + c
I=dxsinx(3+sin2x)I=sinxdxsin2x(3+sin2x)I=d(cosx)(1cos2x)(4cos2x)I=du(1u2)(4u2);whereu=cosxI=du(1+u)(1u)(2+u)(2u)I=16(1u1)(1u+1)du112(1u21u+2)duI=16lnu1u+1112lnu2u+2+cI=16lncosx1cosx+1112lncosx2cosx+2+c
Answered by abdomsup last updated on 12/Sep/20
I =∫  (dx/(sin^3 x +3sinx)) ⇒  I =∫  (dx/(sinx(sin^2  x +3)))  let decompose F(u) =(1/(u(u^2 +3)))  F(u) =(a/u) +((bu +c)/(u^2  +3))  a =(1/3)  , lim_(u→+∞)   uF(u) =0  a+b ⇒b =−(1/3)  F(−u)=−F(u) ⇒c=0 ⇒  F(u) =(1/(3u))−(u/(3(u^2  +3)))  ⇒I =(1/3)∫  (dx/(sinx))−(1/3)∫ ((sinx)/(sin^2 x+3))  ∫  (dx/(sinx)) =_(tsn((x/2))=t)    ∫  ((2dt)/((1+t^2 )((2t)/(1+t^2 ))))  =∫ (dt/t) =ln∣t∣ +c_1 =ln∣tan((x/2))∣ +c_1   ∫  ((sinx)/(sin^2 x +3))dx =∫  ((sinx dx)/(4−cos^2 x))  =_(cosx =t)     ∫  ((−dt)/(4−t^2 )) =∫  (dt/((t−2)(t+2)))  =(1/4)∫((1/(t−2))−(1/(t+2)))dt =(1/4)ln∣((t−2)/(t+2))∣ +c_2   =(1/4)ln∣((cosx−2)/(cosx +2))∣ +c_2  ⇒  I =(1/3)ln∣tan((x/2))∣−(1/(12))ln(((2−cosx)/(2+cosx)))+C
I=dxsin3x+3sinxI=dxsinx(sin2x+3)letdecomposeF(u)=1u(u2+3)F(u)=au+bu+cu2+3a=13,limu+uF(u)=0a+bb=13F(u)=F(u)c=0F(u)=13uu3(u2+3)I=13dxsinx13sinxsin2x+3dxsinx=tsn(x2)=t2dt(1+t2)2t1+t2=dtt=lnt+c1=lntan(x2)+c1sinxsin2x+3dx=sinxdx4cos2x=cosx=tdt4t2=dt(t2)(t+2)=14(1t21t+2)dt=14lnt2t+2+c2=14lncosx2cosx+2+c2I=13lntan(x2)112ln(2cosx2+cosx)+C

Leave a Reply

Your email address will not be published. Required fields are marked *