Menu Close

dx-5-4x-2x-2-




Question Number 86080 by ar247 last updated on 27/Mar/20
∫(dx/( (√(5−4x−2x^2 ))))
$$\int\frac{{dx}}{\:\sqrt{\mathrm{5}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} }} \\ $$
Commented by ar247 last updated on 27/Mar/20
anyone can help me please?
$${anyone}\:{can}\:{help}\:{me}\:{please}? \\ $$
Answered by Rio Michael last updated on 27/Mar/20
5−4x−2x^2  = ((5/2) −2x−x^2 )2                          = ((5/2)−1 + (1−x)^2 )2                           = ((3/2) + (1−x)^2 )2  let 1−x = u ⇒ −du= dx   ∫(dx/( (√(5−4x−2x^2 )))) = −(1/2)∫(du/( (√((3/2) + u^2 )))) = −(1/2)arsinh((((√2)x)/( (√3)))) + k
$$\mathrm{5}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} \:=\:\left(\frac{\mathrm{5}}{\mathrm{2}}\:−\mathrm{2}{x}−{x}^{\mathrm{2}} \right)\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\frac{\mathrm{5}}{\mathrm{2}}−\mathrm{1}\:+\:\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \right)\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left(\frac{\mathrm{3}}{\mathrm{2}}\:+\:\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \right)\mathrm{2} \\ $$$${let}\:\mathrm{1}−{x}\:=\:{u}\:\Rightarrow\:−{du}=\:{dx} \\ $$$$\:\int\frac{{dx}}{\:\sqrt{\mathrm{5}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} }}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{du}}{\:\sqrt{\frac{\mathrm{3}}{\mathrm{2}}\:+\:{u}^{\mathrm{2}} }}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arsinh}\left(\frac{\sqrt{\mathrm{2}}{x}}{\:\sqrt{\mathrm{3}}}\right)\:+\:{k} \\ $$$$\: \\ $$
Commented by ar247 last updated on 27/Mar/20
anything elese?
$${anything}\:{elese}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *