Menu Close

dx-9-4x-2-using-the-trigonometric-substitution-




Question Number 171910 by Tawa11 last updated on 21/Jun/22
∫ (dx/(9   −   4x^2 ))  using the trigonometric substitution.
dx94x2usingthetrigonometricsubstitution.
Answered by aleks041103 last updated on 21/Jun/22
∫(dx/(9−4x^2 ))=(1/9)∫(dx/(1−(((2x)/3))^2 ))=(1/9) (3/2)∫(du/(1−u^2 ))=  =(1/6)∫(du/(1−u^2 ))  (1/(1−u^2 ))=(1/((1−u)(1+u)))=(1/2)((1/(1−u))+(1/(1+u)))  ∫(du/(1−u^2 ))=(1/2)ln∣1+u∣−(1/2)ln∣1−u∣  ⇒∫(dx/(9−4x^2 ))=(1/(12))ln∣((1+(2/3)x)/(1−(2/3)x))∣  ⇒∫(dx/(9−4x^2 ))=(1/(12))ln∣((3+2x)/(3−2x))∣
dx94x2=19dx1(2x3)2=1932du1u2==16du1u211u2=1(1u)(1+u)=12(11u+11+u)du1u2=12ln1+u12ln1udx94x2=112ln1+23x123xdx94x2=112ln3+2x32x
Commented by Tawa11 last updated on 21/Jun/22
I appreciate sir.
Iappreciatesir.
Commented by Tawa11 last updated on 21/Jun/22
But sir, I need the trigonometric[substion.  like.   let  x  =  3 tanθ
Butsir,Ineedthetrigonometric[substion.like.letx=3tanθ
Commented by Tawa11 last updated on 21/Jun/22
Can the question be solved using trigonometric substitution?
Canthequestionbesolvedusingtrigonometricsubstitution?
Commented by mr W last updated on 21/Jun/22
certainly you can! that means you  can always make easy things more  complicated, when you like.
certainlyyoucan!thatmeansyoucanalwaysmakeeasythingsmorecomplicated,whenyoulike.
Commented by Tawa11 last updated on 21/Jun/22
Because the condition given is using trigonometric substitution sir.
Becausetheconditiongivenisusingtrigonometricsubstitutionsir.
Commented by mr W last updated on 21/Jun/22
you can do it! i just said it is not a  good idea. try with u=(3/2)tan θ, you  will see.
youcandoit!ijustsaiditisnotagoodidea.trywithu=32tanθ,youwillsee.
Commented by Tawa11 last updated on 21/Jun/22
Thanks sir.
Thankssir.
Commented by Tawa11 last updated on 22/Jun/22
∫ (dx/(9  −  4x^2 ))  =   ∫ (((3/2) sec^2  θ)/(9  −  9 tan^2 θ)) dθ  =    (3/(18)) ∫ ((sec^2 θ)/(1  −  tan^2 θ))  dθ  sec^2 θ   =   1   +   tan^2 θ         From here, please what next ...
dx94x2=32sec2θ99tan2θdθ=318sec2θ1tan2θdθsec2θ=1+tan2θFromhere,pleasewhatnext
Answered by ajfour last updated on 22/Jun/22
let   I=∫(dx/(9−4x^2 ))=4∫(dx/(36−16x^2 ))     =4∫(dx/((6−4x)(6+4x)))     =(4/(12))∫(((6−4x)+(6+4x))/((6−4x)(6+4x)))dx    =(1/3)∫(dx/(6+4x))+(1/3)∫(dx/(6−4x))    =(1/(12))∫((4dx)/(6+4x))−(1/(12))∫ ((−4dx)/(6−4x))  =(1/(12))ln ∣6+4x∣−(1/(12))ln ∣6−4x∣+c  =(1/(12))ln ∣((3+2x)/(3−2x))∣+c
letI=dx94x2=4dx3616x2=4dx(64x)(6+4x)=412(64x)+(6+4x)(64x)(6+4x)dx=13dx6+4x+13dx64x=1124dx6+4x1124dx64x=112ln6+4x112ln64x+c=112ln3+2x32x+c
Commented by Tawa11 last updated on 22/Jun/22
God bless you sir.
Godblessyousir.
Answered by thfchristopher last updated on 22/Jun/22
Let x=(3/2)sin θ  dx=(3/2)cos θdθ  sin θ=((2x)/3) , tan θ=((2x)/( (√(9−4x^2 )))) , sec θ=(3/( (√(9−4x^2 ))))  ∴ ∫(dx/(9−4x^2 ))  =(3/2)∫((cos θ)/(9cos^2  θ))dθ  =(1/6)∫sec θdθ  =(1/6)ln ∣tan θ+sec θ∣+C  =(1/6)ln ∣((3+2x)/( (√(9−4x^2 ))))∣+C  =(1/6)ln ∣(√((3+2x)/(3−2x)))∣+C  =(1/(12))ln ∣((3+2x)/(3−2x))∣+C
Letx=32sinθdx=32cosθdθsinθ=2x3,tanθ=2x94x2,secθ=394x2dx94x2=32cosθ9cos2θdθ=16secθdθ=16lntanθ+secθ+C=16ln3+2x94x2+C=16ln3+2x32x+C=112ln3+2x32x+C
Commented by thfchristopher last updated on 22/Jun/22
Trigonometric substitution applied on   integral format:  (i)∫(dx/(a^2 +b^2 x^2 ))  or ∫(dx/(b^2 x^2 +a^2 ))  Let bx=atan θ  (ii) ∫(dx/(a^2 −b^2 x^2 ))  Let bx=asin θ  (iii) ∫(dx/(b^2 x^2 −a^2 ))  Let bx=asec θ
Trigonometricsubstitutionappliedonintegralformat:(i)dxa2+b2x2ordxb2x2+a2Letbx=atanθ(ii)dxa2b2x2Letbx=asinθ(iii)dxb2x2a2Letbx=asecθ
Commented by Tawa11 last updated on 22/Jun/22
God bless you sir
Godblessyousir
Commented by Tawa11 last updated on 22/Jun/22
I really appreciate.
Ireallyappreciate.
Commented by mr W last updated on 22/Jun/22
a substitution doesn′t make the thing  easier in any form, therefore unnecesary.  e.g.  ∫(dx/(a^2 −b^2 x^2 ))  =(1/(2a))∫((1/(a−bx))+(1/(a+bx)))dx  =(1/(2ab))[−ln (a−bx)+ln (a+bx)]  =(1/(2ab))×ln ∣((a+bx)/(a−bx))∣+C  ∫(dx/(b^2 x^2 −a^2 ))=−∫(dx/(a^2 −b^2 x^2 ))=−(1/(2ab))×ln ∣((a+bx)/(a−bx))∣+C
asubstitutiondoesntmakethethingeasierinanyform,thereforeunnecesary.e.g.dxa2b2x2=12a(1abx+1a+bx)dx=12ab[ln(abx)+ln(a+bx)]=12ab×lna+bxabx+Cdxb2x2a2=dxa2b2x2=12ab×lna+bxabx+C
Commented by Tawa11 last updated on 22/Jun/22
God bless you sir. I really appreciate.
Godblessyousir.Ireallyappreciate.

Leave a Reply

Your email address will not be published. Required fields are marked *