Menu Close

dx-a-2-be-cx-




Question Number 187530 by sciencestudentW last updated on 18/Feb/23
∫(dx/( (√(a^2 +be^(cx) ))))=?
$$\int\frac{{dx}}{\:\sqrt{{a}^{\mathrm{2}} +{be}^{{cx}} }}=? \\ $$
Answered by anurup last updated on 18/Feb/23
a^2 +be^(cx) =t^2   ⇒bce^(cx) dx =2tdt  ⇒dx=((2tdt)/(c(t^2 −a^2 )))  ∫((2tdt)/(c(t^2 −a^2 )t))  =(2/c)∫(dt/(t^2 −a^2 ))  =(1/(ca))ln ∣((t−a)/(t+a))∣+k  =(1/(ca))ln ∣(((√(a^2 +be^(cx) )) −a)/( (√(a^2 +be^(cx) )) +a))∣+k
$${a}^{\mathrm{2}} +{be}^{{cx}} ={t}^{\mathrm{2}} \\ $$$$\Rightarrow{bce}^{{cx}} {dx}\:=\mathrm{2}{tdt} \\ $$$$\Rightarrow{dx}=\frac{\mathrm{2}{tdt}}{{c}\left({t}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)} \\ $$$$\int\frac{\mathrm{2}{tdt}}{{c}\left({t}^{\mathrm{2}} −{a}^{\mathrm{2}} \right){t}} \\ $$$$=\frac{\mathrm{2}}{{c}}\int\frac{{dt}}{{t}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{{ca}}\mathrm{ln}\:\mid\frac{{t}−{a}}{{t}+{a}}\mid+\mathrm{k} \\ $$$$=\frac{\mathrm{1}}{\mathrm{c}{a}}\mathrm{ln}\:\mid\frac{\sqrt{{a}^{\mathrm{2}} +{be}^{{cx}} }\:−{a}}{\:\sqrt{{a}^{\mathrm{2}} +{be}^{{cx}} }\:+{a}}\mid+\mathrm{k} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *